These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15967662)

  • 1. Concise synthesis and voltammetric studies of dielsiquinone, a cytotoxic azaanthraquinone.
    Brisach-Wittmeyer A; Souna Sido AS; Guilini P; Désaubry L
    Bioorg Med Chem Lett; 2005 Aug; 15(15):3609-10. PubMed ID: 15967662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and in vitro evaluation of 4-substituted-1-azaanthraquinones.
    Lee H; Hong SS; Choi JY; Cho J; Kim YH
    Arch Pharm Res; 1998 Feb; 21(1):73-5. PubMed ID: 9875519
    [No Abstract]   [Full Text] [Related]  

  • 3. Synthesis and structure-activity relationships of 1,5-diazaanthraquinones as antitumour compounds.
    Avendaño C; Pérez JM; Blanco Mdel M; de la Fuente JA; Manzanaro S; Vicent MJ; Martín MJ; Salvador-Tormo N; Menéndez JC
    Bioorg Med Chem Lett; 2004 Aug; 14(15):3929-32. PubMed ID: 15225700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azaanthraquinone assembly from N-propargylamino quinone via a Au(I)-catalyzed 6-endo-dig cycloisomerization.
    Jiang C; Xu M; Wang S; Wang H; Yao ZJ
    J Org Chem; 2010 Jun; 75(12):4323-5. PubMed ID: 20491491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relations of azafluorenone and azaanthraquinone as antimicrobial compounds.
    Koyama J; Morita I; Kobayashi N; Osakai T; Usuki Y; Taniguchi M
    Bioorg Med Chem Lett; 2005 Feb; 15(4):1079-82. PubMed ID: 15686916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of scorpinone, a 2-azaanthraquinone from Amorosia littoralis, a fungus from marine sediment.
    Van Wagoner RM; Mantle PG; Wright JL
    J Nat Prod; 2008 Mar; 71(3):426-30. PubMed ID: 18281953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia activated prodrugs of a 9-aza-anthrapyrazole derivative that has promising anticancer activity.
    El-Dakdouki MH; Adamski N; Foster L; Hacker MP; Erhardt PW
    J Med Chem; 2011 Dec; 54(23):8224-7. PubMed ID: 22011244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity and DNA-binding property of non-diynene class of dynemicins and aza-anthraquinones.
    Shirai R; Shimazawa R; Shichita M; Takahashi M; Hashimoto Y; Iwasaki S
    Nucleic Acids Symp Ser; 1995; (34):151-2. PubMed ID: 8841597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and in vitro cytotoxicity of 1-azaanthraquinone-3-carboxamides.
    Lee H; Lee CW; Yang SI
    Arch Pharm Res; 1999 Aug; 22(4):380-3. PubMed ID: 10489877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azaanthraquinone assembly from N-propargylamino quinone via iodine-induced 6-endo-dig electrophilic cyclization.
    Fei N; Hou Q; Wang S; Wang H; Yao ZJ
    Org Biomol Chem; 2010 Sep; 8(18):4096-103. PubMed ID: 20652179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New 1,2,3,4-tetrahydro-1-aza-anthraquinones and 2-aminoalkyl compounds from norlapachol with molluscicidal activity.
    Barbosa TP; Camara CA; Silva TM; Martins RM; Pinto AC; Vargas MD
    Bioorg Med Chem; 2005 Dec; 13(23):6464-9. PubMed ID: 16140019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxic activity of some glycoconjugates including saponins and anthracyclines.
    Ekholm FS; Berényi Á; Lagerquist L; Saloranta T; Zupkó I; Schneider G; Wölfling J; Leino R
    Carbohydr Res; 2012 Jul; 356():295-8. PubMed ID: 22520504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antitumor potential of aza-bioisosterism in anthracenedione-based drugs.
    Sissi C; Palumbo M
    Curr Top Med Chem; 2004; 4(2):219-30. PubMed ID: 14754455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of squaric acid amides of anthracycline antibiotics. Synthesis and cytotoxic properties.
    Tevyashova A; Sztaricskai F; Batta G; Herczegh P; Jeney A
    Bioorg Med Chem Lett; 2004 Sep; 14(18):4783-9. PubMed ID: 15324908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the structure of new anthracycline antibiotics on their biological properties.
    Wasowska M; Oszczapowicz I; Wietrzyk J; Opolski A; Madej J; Dzimira S; Oszczapowicz J
    Anticancer Res; 2005; 25(3B):2043-8. PubMed ID: 16158943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling of singlet-oxygen binding to anthraquinones in relation to the peroxidating activity of antitumor anthraquinone drugs.
    Liwo A; Jeziorek D; Ossowski T; Dyl D; Tempczyk A; Tarasiuk J; Nowacka M; Borowski E; Woźnicki W
    Acta Biochim Pol; 1995; 42(4):445-56. PubMed ID: 8852335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro modeling of the structure-activity determinants of anthracycline cardiotoxicity.
    Menna P; Minotti G; Salvatorelli E
    Cell Biol Toxicol; 2007 Jan; 23(1):49-62. PubMed ID: 17031515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the low activity of antitumor anthracenediones, mitoxantrone and ametantrone, in oxygen radical generation catalyzed by NADH dehydrogenase. Enzymatic and molecular modelling studies.
    Tarasiuk J; Mazerski J; Tkaczyk-Gobis K; Borowski E
    Eur J Med Chem; 2005 Apr; 40(4):321-8. PubMed ID: 15804531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concise total syntheses of variolin B and deoxyvariolin B.
    Anderson RJ; Hill JB; Morris JC
    J Org Chem; 2005 Aug; 70(16):6204-12. PubMed ID: 16050678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of structural factors of anthraquinone compounds and their quinone-modified analogues in NADH dehydrogenase-catalysed oxygen radical formation.
    Tarasiuk J; Tkaczyk-Gobis K; Stefañska B; Dzieduszycka M; Priebe W; Martelli S; Borowski E
    Anticancer Drug Des; 1998 Dec; 13(8):923-39. PubMed ID: 10335267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.