BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15967736)

  • 1. The role of airway epithelium and blood neutrophils in the inflammatory response in cystic fibrosis.
    Terheggen-Lagro SW; Rijkers GT; van der Ent CK
    J Cyst Fibros; 2005 Aug; 4 Suppl 2():15-23. PubMed ID: 15967736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Early bronchial inflammation in cystic fibrosis].
    Puchelle E
    J Soc Biol; 2002; 196(1):29-35. PubMed ID: 12134630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airway epithelial cell inflammatory signalling in cystic fibrosis.
    Jacquot J; Tabary O; Le Rouzic P; Clement A
    Int J Biochem Cell Biol; 2008; 40(9):1703-15. PubMed ID: 18434235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutrophil recruitment and airway epithelial cell involvement in chronic cystic fibrosis lung disease.
    Conese M; Copreni E; Di Gioia S; De Rinaldis P; Fumarulo R
    J Cyst Fibros; 2003 Sep; 2(3):129-35. PubMed ID: 15463861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the amiloride-sensitive epithelial Na+ channel in the pathogenesis and as a therapeutic target for cystic fibrosis lung disease.
    Mall MA
    Exp Physiol; 2009 Feb; 94(2):171-4. PubMed ID: 19060118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel improvement of sodium and chloride transport defects by miglustat (n-butyldeoxynojyrimicin) in cystic fibrosis epithelial cells.
    Noël S; Wilke M; Bot AG; De Jonge HR; Becq F
    J Pharmacol Exp Ther; 2008 Jun; 325(3):1016-23. PubMed ID: 18309088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Physiopathology of cystic fibrosis lung disease].
    Chinet T
    Rev Mal Respir; 1999 Jun; 16(3):339-45. PubMed ID: 10472642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of CFTR in airway disease.
    Pilewski JM; Frizzell RA
    Physiol Rev; 1999 Jan; 79(1 Suppl):S215-55. PubMed ID: 9922383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-inflammatory effect of miglustat in bronchial epithelial cells.
    Dechecchi MC; Nicolis E; Norez C; Bezzerri V; Borgatti M; Mancini I; Rizzotti P; Ribeiro CM; Gambari R; Becq F; Cabrini G
    J Cyst Fibros; 2008 Nov; 7(6):555-65. PubMed ID: 18815075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationale for hypertonic saline therapy for cystic fibrosis lung disease.
    Tarran R; Donaldson S; Boucher RC
    Semin Respir Crit Care Med; 2007 Jun; 28(3):295-302. PubMed ID: 17562499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammation and CFTR: might neutrophils be the key in cystic fibrosis?
    Witko-Sarsat V; Sermet-Gaudelus I; Lenoir G; Descamps-Latscha B
    Mediators Inflamm; 1999; 8(1):7-11. PubMed ID: 10704083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition by TNF-alpha and IL-4 of cationic lipid mediated gene transfer in cystic fibrosis tracheal gland cells.
    Bastonero S; Gargouri M; Ortiou S; Guéant JL; Merten MD
    J Gene Med; 2005 Nov; 7(11):1439-49. PubMed ID: 16001392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis: a disease of vulnerability to airway surface dehydration.
    Boucher RC
    Trends Mol Med; 2007 Jun; 13(6):231-40. PubMed ID: 17524805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis.
    Marcet B; Boeynaems JM
    Pharmacol Ther; 2006 Dec; 112(3):719-32. PubMed ID: 16828872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Benzamil and mucoviscidosis. Primary culture of nasal mucosa as an electrophysiologic in vitro model].
    Blank U; Glanz H; Eistert B; Fryen A; Lindemann H; Hüls G; Clauss W; Weber WM
    HNO; 1996 Apr; 44(4):172-7. PubMed ID: 8655347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased NaCl-induced interleukin-8 production by human bronchial epithelial cells is enhanced by the DeltaF508/W1282X mutation of the cystic fibrosis transmembrane conductance regulator gene.
    Chan MM; Chmura K; Chan ED
    Cytokine; 2006 Mar; 33(6):309-16. PubMed ID: 16647268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells.
    Baconnais S; Delavoie F; Zahm JM; Milliot M; Terryn C; Castillon N; Banchet V; Michel J; Danos O; Merten M; Chinet T; Zierold K; Bonnet N; Puchelle E; Balossier G
    Exp Cell Res; 2005 Oct; 309(2):296-304. PubMed ID: 16051214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered terminal glycosylation and the pathophysiology of CF lung disease.
    Rhim AD; Stoykova LI; Trindade AJ; Glick MC; Scanlin TF
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():95-6. PubMed ID: 15463936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways.
    Verhaeghe C; Remouchamps C; Hennuy B; Vanderplasschen A; Chariot A; Tabruyn SP; Oury C; Bours V
    Biochem Pharmacol; 2007 Jun; 73(12):1982-94. PubMed ID: 17466952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proinflammatory effect of sodium 4-phenylbutyrate in deltaF508-cystic fibrosis transmembrane conductance regulator lung epithelial cells: involvement of extracellular signal-regulated protein kinase 1/2 and c-Jun-NH2-terminal kinase signaling.
    Roque T; Boncoeur E; Saint-Criq V; Bonvin E; Clement A; Tabary O; Jacquot J
    J Pharmacol Exp Ther; 2008 Sep; 326(3):949-56. PubMed ID: 18574003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.