These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 15967988)

  • 61. Phospholipid-dependent regulation of cytochrome c3-mediated electron transport across membranes.
    Kim SM; Yamamoto T; Todokoro Y; Takayama Y; Fujiwara T; Park JS; Akutsu H
    Biophys J; 2006 Jan; 90(2):506-13. PubMed ID: 16258050
    [TBL] [Abstract][Full Text] [Related]  

  • 62. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain.
    Hallock KJ; Lee DK; Ramamoorthy A
    Biophys J; 2003 May; 84(5):3052-60. PubMed ID: 12719236
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Inequivalence of fluorescent choline and ethanolamine phospholipids in the erythrocyte membrane: fluorescence lifetime determination in the frequency and time domain.
    Prenner E; Sommer A; Kungl A; Stütz H; Friedl H; Hermetter A
    Arch Biochem Biophys; 1993 Sep; 305(2):473-6. PubMed ID: 8373186
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of surface treatment on diffusion and domain formation in supported lipid bilayers.
    Seu KJ; Pandey AP; Haque F; Proctor EA; Ribbe AE; Hovis JS
    Biophys J; 2007 Apr; 92(7):2445-50. PubMed ID: 17218468
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nanodomain Formation in Planar Supported Lipid Bilayers Composed of Fluid and Polymerized Dienoyl Lipids.
    Fonseka NM; Liang B; Orosz KS; Jones IW; Hall HK; Christie HS; Aspinwall CA; Saavedra SS
    Langmuir; 2019 Sep; 35(38):12483-12491. PubMed ID: 31454251
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fluorescence studies of dehydroergosterol in phosphatidylethanolamine/phosphatidylcholine bilayers.
    Cheng KH; Virtanen J; Somerharju P
    Biophys J; 1999 Dec; 77(6):3108-19. PubMed ID: 10585932
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Aqueous-filled polymer microcavity arrays: versatile & stable lipid bilayer platforms offering high lateral mobility to incorporated membrane proteins.
    Basit H; Gaul V; Maher S; Forster RJ; Keyes TE
    Analyst; 2015 May; 140(9):3012-8. PubMed ID: 25798456
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Properties of water hydrating the galactolipid and phospholipid bilayers: a molecular dynamics simulation study.
    Markiewicz M; Baczyński K; Pasenkiewicz-Gierula M
    Acta Biochim Pol; 2015; 62(3):475-81. PubMed ID: 26291044
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cooperative partition model of nystatin interaction with phospholipid vesicles.
    Coutinho A; Prieto M
    Biophys J; 2003 May; 84(5):3061-78. PubMed ID: 12719237
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Direct imaging of domains in the Lbeta' state of 1,2-dipalmitoylphosphatidylcholine bilayers.
    Lee CW; Decca RS; Wassall SR; Breen JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061914. PubMed ID: 16241268
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems.
    Stottrup BL; Stevens DS; Keller SL
    Biophys J; 2005 Jan; 88(1):269-76. PubMed ID: 15475588
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.
    Marquês JT; Viana AS; De Almeida RF
    Biochim Biophys Acta; 2011 Jan; 1808(1):405-14. PubMed ID: 20955684
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structure and dynamics of water at the interface with phospholipid bilayers.
    Bhide SY; Berkowitz ML
    J Chem Phys; 2005 Dec; 123(22):224702. PubMed ID: 16375490
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Combination of ellipsometry, laser scanning microscopy and Z-scan fluorescence correlation spectroscopy elucidating interaction of cryptdin-4 with supported phospholipid bilayers.
    Miszta A; Machán R; Benda A; Ouellette AJ; Hermens WT; Hof M
    J Pept Sci; 2008 Apr; 14(4):503-9. PubMed ID: 17994618
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers.
    Ali MR; Cheng KH; Huang J
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5372-7. PubMed ID: 17372226
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Determination of the activation volume of PLCbeta by Gbeta gamma-subunits through the use of high hydrostatic pressure.
    Scarlata S
    Biophys J; 2005 Apr; 88(4):2867-74. PubMed ID: 15665133
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Arsenite interactions with phospholipid bilayers as molecular models for the human erythrocyte membrane.
    Suwalsky M; Rivera C; Villena F; Sotomayor CP; Jemiola-Rzeminska M; Strzalka K
    Biophys Chem; 2007 Apr; 127(1-2):28-35. PubMed ID: 17175091
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fluorescence correlation and lifetime correlation spectroscopy applied to the study of supported lipid bilayer models of the cell membrane.
    Basit H; Lopez SG; Keyes TE
    Methods; 2014 Jul; 68(2):286-99. PubMed ID: 24561824
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Do interactions between protein and phospholipids influence the release behavior from lipid-based exenatide depot systems?
    Breitsamer M; Stulz A; Heerklotz HH; Winter G
    Eur J Pharm Biopharm; 2019 Sep; 142():61-69. PubMed ID: 31195130
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reconstituted syntaxin1a/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers.
    Wagner ML; Tamm LK
    Biophys J; 2001 Jul; 81(1):266-75. PubMed ID: 11423412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.