BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15968348)

  • 1. Synthesis of huge macrocycles using two calix[4]arenes as templates.
    Cao Y; Wang L; Bolte M; Vysotsky MO; Böhmer V
    Chem Commun (Camb); 2005 Jul; (25):3132-4. PubMed ID: 15968348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topologically novel multiple rotaxanes and catenanes based on tetraurea calix[4]arenes.
    Bogdan A; Rudzevich Y; Vysotsky MO; Böhmer V
    Chem Commun (Camb); 2006 Jul; (28):2941-52. PubMed ID: 16832500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calix[4]arene-based bis[2]catenanes: synthesis and chiral resolution.
    Molokanova O; Bogdan A; Vysotsky MO; Bolte M; Ikai T; Okamoto Y; Böhmer V
    Chemistry; 2007; 13(21):6157-70. PubMed ID: 17465427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise synthesis and selective dimerisation of bis- and trisloop tetra-urea calix[4]arenes.
    Rudzevich Y; Cao Y; Rudzevich V; Böhmer V
    Chemistry; 2008; 14(11):3346-54. PubMed ID: 18270985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and resolution of a multifunctional inherently chiral calix[4]arene with an ABCD substitution pattern at the wide rim: the effect of a multifunctional structure in the organocatalyst on enantioselectivity in asymmetric reactions.
    Shirakawa S; Kimura T; Murata S; Shimizu S
    J Org Chem; 2009 Feb; 74(3):1288-96. PubMed ID: 19099418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple catenanes derived from calix[4]arenes.
    Wang L; Vysotsky MO; Bogdan A; Bolte M; Böhmer V
    Science; 2004 May; 304(5675):1312-4. PubMed ID: 15166377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetraurea calix[4]arenes with sulfur functions: synthesis, dimerization to capsules, and self-assembly on gold.
    Xu S; Podoprygorina G; Böhmer V; Ding Z; Rooney P; Rangan C; Mittler S
    Org Biomol Chem; 2007 Feb; 5(3):558-68. PubMed ID: 17252139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New molecular topologies by fourfold metathesis reactions within a hydrogen-bonded calix[4]arene dimer.
    Vysotsky MO; Bolte M; Thondorf I; Böhmer V
    Chemistry; 2003 Jul; 9(14):3375-82. PubMed ID: 12866081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourfold tetraurea calix[4]arenes--potential cores for the formation of self-assembled dendrimers.
    Rudzevich Y; Fischer K; Schmidt M; Böhmer V
    Org Biomol Chem; 2005 Nov; 3(21):3916-25. PubMed ID: 16240009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of mono-, di- and tetra-alkyne functionalized calix[4]arenes: reactions of these multipodal ligands with dicobalt octacarbonyl to give complexes which contain up to eight cobalt atoms.
    Chetcuti MJ; Devoille AM; Othman AB; Souane R; Thuéry P; Vicens J
    Dalton Trans; 2009 Apr; (16):2999-3008. PubMed ID: 19352528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and conformational study of the first triply bridged calix[6]azatubes.
    Le Gac S; Zeng X; Reinaud O; Jabin I
    J Org Chem; 2005 Feb; 70(4):1204-10. PubMed ID: 15704952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and structures of an unusual germanium(II) calix[4]arene complex and the first germanium(II) calix[8]arene complex and their reactivity with diiron nonacarbonyl.
    Wetherby AE; Goeller LR; DiPasquale AG; Rheingold AL; Weinert CS
    Inorg Chem; 2007 Sep; 46(18):7579-86. PubMed ID: 17691771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single and dual glycoside clustering around calix[4]arene scaffolds via click thiol-ene coupling and azide-alkyne cycloaddition.
    Fiore M; Chambery A; Marra A; Dondoni A
    Org Biomol Chem; 2009 Oct; 7(19):3910-3. PubMed ID: 19763289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and crystal structure of uranium(IV) complexes with calix[n]arenes (n = 4, 6 and 8): mononuclear, polynuclear and 1D polymeric species.
    Salmon L; Thuéry P; Ephritikhine M
    Dalton Trans; 2006 Aug; (30):3629-37. PubMed ID: 16865174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of lanthanides and actinides using magnetic silica particles bearing covalently attached tetra-CMPO-calix[4]arenes.
    Böhmer V; Dozol JF; Grüttner C; Liger K; Matthews SE; Rudershausen S; Saadioui M; Wang P
    Org Biomol Chem; 2004 Aug; 2(16):2327-34. PubMed ID: 15305214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Narrow-rim functionalization of calix[4]arenes via Sonogashira coupling reactions.
    Al-Saraierh H; Miller DO; Georghiou PE
    J Org Chem; 2005 Oct; 70(21):8273-80. PubMed ID: 16209567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First protection of a wide-rim tetraamino calix[4]arene in opposite positions.
    Rudzevich Y; Rudzevich V; Schollmeyer D; Böhmer V
    Org Lett; 2007 Mar; 9(6):957-60. PubMed ID: 17295493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdocalixarene structure control via rim deprotonation. synthesis, characterization, and crystal structures of calix[4]arene Mo(VI) monooxo complexes and calix[4]arene alkali metal/Mo(VI) dioxo complexes.
    Liu L; Zakharov LN; Golen JA; Rheingold AL; Watson WH; Hanna TA
    Inorg Chem; 2006 May; 45(10):4247-60. PubMed ID: 16676988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetra-urea calix[4]arenes 1,3-bridged at the narrow rim.
    Podoprygorina G; Bolte M; Böhmer V
    Org Biomol Chem; 2009 Apr; 7(8):1592-8. PubMed ID: 19343245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1,3-Alternate calix[4]arenes, selectively functionalized by amino groups.
    Danila C; Bolte M; Böhmer V
    Org Biomol Chem; 2005 Jan; 3(1):172-84. PubMed ID: 15602613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.