These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15968349)

  • 1. Porous materials show superhydrophobic to superhydrophilic switching.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC; Roach P
    Chem Commun (Camb); 2005 Jul; (25):3135-7. PubMed ID: 15968349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV-driven reversible switching of a polystyrene/titania nanocomposite coating between superhydrophobicity and superhydrophilicity.
    Hou W; Wang Q
    Langmuir; 2009 Jun; 25(12):6875-9. PubMed ID: 19388630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity.
    Gu C; Zhang J; Tu J
    J Colloid Interface Sci; 2010 Dec; 352(2):573-9. PubMed ID: 20851408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophilic and superwetting surfaces: definition and mechanisms of control.
    Drelich J; Chibowski E
    Langmuir; 2010 Dec; 26(24):18621-3. PubMed ID: 21090661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New responsive property of poly(epsilon-caprolactone) as the thermal switch from superhydrophobic to superhydrophilic.
    Hu S; Cao X; Song Y; Li C; Xie P; Jiang L
    Chem Commun (Camb); 2008 May; (17):2025-7. PubMed ID: 18536809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films.
    Saison T; Peroz C; Chauveau V; Berthier S; Sondergard E; Arribart H
    Bioinspir Biomim; 2008 Dec; 3(4):046004. PubMed ID: 18812652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process.
    Li S; Zhang S; Wang X
    Langmuir; 2008 May; 24(10):5585-90. PubMed ID: 18426232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO2 composite nanofiber surfaces.
    Borras A; Barranco A; González-Elipe AR
    Langmuir; 2008 Aug; 24(15):8021-6. PubMed ID: 18576610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. To adjust wetting properties of organic surface by in situ photoreaction of aromatic azide.
    Shi F; Niu J; Liu Z; Wang Z; Smet M; Dehaen W; Qiu Y; Zhang X
    Langmuir; 2007 Jan; 23(3):1253-7. PubMed ID: 17241041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces.
    Li W; Amirfazli A
    J Colloid Interface Sci; 2005 Dec; 292(1):195-201. PubMed ID: 15979631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties.
    Chiou NR; Lu C; Guan J; Lee LJ; Epstein AJ
    Nat Nanotechnol; 2007 Jun; 2(6):354-7. PubMed ID: 18654306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible switching on superhydrophobic TiO2 nano-strawberry films fabricated at low temperature.
    Sun W; Zhou S; Chen P; Peng L
    Chem Commun (Camb); 2008 Feb; (5):603-5. PubMed ID: 18209803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterned superhydrophobic metallic surfaces.
    Kietzig AM; Hatzikiriakos SG; Englezos P
    Langmuir; 2009 Apr; 25(8):4821-7. PubMed ID: 19267439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of CdS films with superhydrophobicity by the microwave assisted chemical bath deposition.
    Liu Y; Tan T; Wang B; Zhai R; Song X; Li E; Wang H; Yan H
    J Colloid Interface Sci; 2008 Apr; 320(2):540-7. PubMed ID: 18262537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern.
    Lim HS; Han JT; Kwak D; Jin M; Cho K
    J Am Chem Soc; 2006 Nov; 128(45):14458-9. PubMed ID: 17090019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface.
    Wang S; Liu H; Liu D; Ma X; Fang X; Jiang L
    Angew Chem Int Ed Engl; 2007; 46(21):3915-7. PubMed ID: 17437313
    [No Abstract]   [Full Text] [Related]  

  • 19. UV and thermally stable superhydrophobic coatings from sol-gel processing.
    Xiu Y; Hess DW; Wong CP
    J Colloid Interface Sci; 2008 Oct; 326(2):465-70. PubMed ID: 18656893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-D thermodynamic analysis of superhydrophobic surfaces.
    Yamamoto K; Ogata S
    J Colloid Interface Sci; 2008 Oct; 326(2):471-7. PubMed ID: 18684470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.