BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 15968462)

  • 21. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides.
    Futaki S; Nakase I; Suzuki T; Youjun Z; Sugiura Y
    Biochemistry; 2002 Jun; 41(25):7925-30. PubMed ID: 12069581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of electronic-neutral penetrating peptides cyclosporin A to deliver pro-apoptotic peptide: A possibly better choice than positively charged TAT.
    Gao W; Yang X; Lin Z; He B; Mei D; Wang D; Zhang H; Zhang H; Dai W; Wang X; Zhang Q
    J Control Release; 2017 Sep; 261():174-186. PubMed ID: 28662902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters.
    Wender PA; Mitchell DJ; Pattabiraman K; Pelkey ET; Steinman L; Rothbard JB
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13003-8. PubMed ID: 11087855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular transduction using cell-penetrating peptides.
    Sawant R; Torchilin V
    Mol Biosyst; 2010 Apr; 6(4):628-40. PubMed ID: 20237640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell-penetrating peptides: Nanocarrier for macromolecule delivery in living cells.
    Chugh A; Eudes F; Shim YS
    IUBMB Life; 2010 Mar; 62(3):183-93. PubMed ID: 20101631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides.
    Bolhassani A; Jafarzade BS; Mardani G
    Peptides; 2017 Jan; 87():50-63. PubMed ID: 27887988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel application of polioviral capsid: development of a potent and prolonged oral calcitonin using polioviral binding ligand and Tat peptide.
    Manosroi J; Lohcharoenkal W; Götz F; Werner RG; Manosroi W; Manosroi A
    Drug Dev Ind Pharm; 2014 Aug; 40(8):1092-100. PubMed ID: 23802147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake.
    Subrizi A; Tuominen E; Bunker A; Róg T; Antopolsky M; Urtti A
    J Control Release; 2012 Mar; 158(2):277-85. PubMed ID: 22100438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular internalization of human calcitonin derived peptides in MDCK monolayers: a comparative study with Tat(47-57) and penetratin(43-58).
    Tréhin R; Krauss U; Muff R; Meinecke M; Beck-Sickinger AG; Merkle HP
    Pharm Res; 2004 Jan; 21(1):33-42. PubMed ID: 14984255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.
    Meloni BP; Craig AJ; Milech N; Hopkins RM; Watt PM; Knuckey NW
    Cell Mol Neurobiol; 2014 Mar; 34(2):173-81. PubMed ID: 24213248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of nuclear internalization of Tat peptides by fluorescent dyes and receptor-avid peptides.
    Shen D; Liang K; Ye Y; Tetteh E; Achilefu S
    FEBS Lett; 2007 May; 581(9):1793-9. PubMed ID: 17416362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane binding and translocation of cell-penetrating peptides.
    Thorén PE; Persson D; Esbjörner EK; Goksör M; Lincoln P; Nordén B
    Biochemistry; 2004 Mar; 43(12):3471-89. PubMed ID: 15035618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro efficient transfection by CM₁₈-Tat₁₁ hybrid peptide: a new tool for gene-delivery applications.
    Salomone F; Cardarelli F; Signore G; Boccardi C; Beltram F
    PLoS One; 2013; 8(7):e70108. PubMed ID: 23922923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing tumor-specific intracellular delivering efficiency of cell-penetrating peptide by fusion with a peptide targeting to EGFR.
    Nguyen LT; Yang XZ; Du X; Wang JW; Zhang R; Zhao J; Wang FJ; Dong Y; Li PF
    Amino Acids; 2015 May; 47(5):997-1006. PubMed ID: 25655386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Tracking Trojan peptides in cells].
    Sagan S; Burlina F; Delaroche D; Aussedat B; Aubry S; Bolbach G; Lavielle S; Chassaing G
    J Soc Biol; 2006; 200(3):213-9. PubMed ID: 17417135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways.
    Ignatovich IA; Dizhe EB; Pavlotskaya AV; Akifiev BN; Burov SV; Orlov SV; Perevozchikov AP
    J Biol Chem; 2003 Oct; 278(43):42625-36. PubMed ID: 12882958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat.
    Silhol M; Tyagi M; Giacca M; Lebleu B; Vivès E
    Eur J Biochem; 2002 Jan; 269(2):494-501. PubMed ID: 11856307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles.
    Magzoub M; Eriksson LE; Gräslund A
    Biophys Chem; 2003 Mar; 103(3):271-88. PubMed ID: 12727289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.