These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15968572)

  • 1. Injection of glutamate into the pedunculopontine tegmental nuclei of anesthetized rat causes respiratory dysrhythmia and alters EEG and EMG power.
    Saponjic J; Radulovacki M; Carley DW
    Sleep Breath; 2005 Jun; 9(2):82-91. PubMed ID: 15968572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of respiratory pattern and upper airway muscle activity by the pedunculopontine tegmentum: role of NMDA receptors.
    Saponjic J; Radulovacki M; Carley DW
    Sleep Breath; 2006 Dec; 10(4):195-202. PubMed ID: 17031714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonin and noradrenaline modulate respiratory pattern disturbances evoked by glutamate injection into the pedunculopontine tegmentum of anesthetized rats.
    Saponjic J; Cvorovic J; Radulovacki M; Carley DW
    Sleep; 2005 May; 28(5):560-70. PubMed ID: 16171269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory pattern modulation by the pedunculopontine tegmental nucleus.
    Saponjic J; Radulovacki M; Carley DW
    Respir Physiol Neurobiol; 2003 Nov; 138(2-3):223-37. PubMed ID: 14609512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional topography of respiratory, cardiovascular and pontine-wave responses to glutamate microstimulation of the pedunculopontine tegmentum of the rat.
    Topchiy I; Waxman J; Radulovacki M; Carley DW
    Respir Physiol Neurobiol; 2010 Aug; 173(1):64-70. PubMed ID: 20601208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. REM sleep diversity following the pedunculopontine tegmental nucleus lesion in rat.
    Petrovic J; Lazic K; Kalauzi A; Saponjic J
    Behav Brain Res; 2014 Sep; 271():258-68. PubMed ID: 24946074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of anesthetic regimen on the respiratory pattern, EEG microstructure and sleep in the rat model of cholinergic Parkinson's disease neuropathology.
    Lazic K; Petrovic J; Ciric J; Kalauzi A; Saponjic J
    Neuroscience; 2015 Sep; 304():1-13. PubMed ID: 26186897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. REM sleep disorder following general anesthesia in rats.
    Lazic K; Petrovic J; Ciric J; Kalauzi A; Saponjic J
    Physiol Behav; 2017 Jan; 168():41-54. PubMed ID: 27771371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in nembutal-anesthetized rats.
    Fink AM; Dean C; Piano MR; Carley DW
    PLoS One; 2017; 12(11):e0187956. PubMed ID: 29121095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of pedunculopontine tegmental PKA prevents GABAB receptor activation-mediated rapid eye movement sleep suppression in the freely moving rat.
    Datta S
    J Neurophysiol; 2007 Jun; 97(6):3841-50. PubMed ID: 17409165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat.
    Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J
    Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation of the pedunculopontine tegmental NMDA receptors induces wakefulness and cortical activation in the rat.
    Datta S; Patterson EH; Spoley EE
    J Neurosci Res; 2001 Oct; 66(1):109-16. PubMed ID: 11599007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amygdala and the pedunculopontine tegmental nucleus: interactions controlling active (rapid eye movement) sleep.
    Xi M; Fung SJ; Zhang J; Sampogna S; Chase MH
    Exp Neurol; 2012 Nov; 238(1):44-51. PubMed ID: 22971360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat.
    Ulloor J; Mavanji V; Saha S; Siwek DF; Datta S
    J Neurophysiol; 2004 Apr; 91(4):1822-31. PubMed ID: 14702336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel role of brain stem pedunculopontine tegmental adenylyl cyclase in the regulation of spontaneous REM sleep in the freely moving rat.
    Datta S; Prutzman SL
    J Neurophysiol; 2005 Sep; 94(3):1928-37. PubMed ID: 15888525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of rapid eye movement sleep in the freely moving rat: local microinjection of serotonin, norepinephrine, and adenosine into the brainstem.
    Datta S; Mavanji V; Patterson EH; Ulloor J
    Sleep; 2003 Aug; 26(5):513-20. PubMed ID: 12938803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the pedunculopontine tegmental nucleus: a novel mechanism for the homeostatic regulation of rapid eye movement sleep.
    Barnes AK; Koul-Tiwari R; Garner JM; Geist PA; Datta S
    J Neurochem; 2017 Apr; 141(1):111-123. PubMed ID: 28027399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.