These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15969387)

  • 1. Universal occurrence of soot superaggregates with a fractal dimension of 2.6 in heavily sooting laminar diffusion flames.
    Kim W; Sorensen CM; Chakrabarti A
    Langmuir; 2004 May; 20(10):3969-73. PubMed ID: 15969387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic percolation.
    Heinson WR; Chakrabarti A; Sorensen CM
    Phys Rev E; 2017 May; 95(5-1):052109. PubMed ID: 28618502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low fractal dimension cluster-dilute soot aggregates from a premixed flame.
    Chakrabarty RK; Moosmüller H; Arnott WP; Garro MA; Tian G; Slowik JG; Cross ES; Han JH; Davidovits P; Onasch TB; Worsnop DR
    Phys Rev Lett; 2009 Jun; 102(23):235504. PubMed ID: 19658949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soot superaggregates from flaming wildfires and their direct radiative forcing.
    Chakrabarty RK; Beres ND; Moosmüller H; China S; Mazzoleni C; Dubey MK; Liu L; Mishchenko MI
    Sci Rep; 2014 Jul; 4():5508. PubMed ID: 24981204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous soot multi-parameter fields predictions in laminar sooting flames from neural network-based flame luminosity measurement I: methodology.
    Wang Q; Li Z; Sun Z; Liu H; Cai W; Yao M
    Opt Lett; 2021 Aug; 46(16):3869-3872. PubMed ID: 34388762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure.
    Hentschel J; Suntz R; Bockhorn H
    Appl Opt; 2005 Nov; 44(31):6673-81. PubMed ID: 16270556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative 2D thermometry in turbulent sooting non-premixed flames using filtered Rayleigh scattering.
    Pu J; Sutton JA
    Appl Opt; 2021 Jul; 60(19):5742-5751. PubMed ID: 34263870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal Morphology and Breakage of DLCA and RLCA Aggregates.
    Tang S; Preece JM; McFarlane CM; Zhang Z
    J Colloid Interface Sci; 2000 Jan; 221(1):114-123. PubMed ID: 10623457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructure Transition of Young Soot Aggregates to Mature Soot Aggregates in Diluted Diffusion Flames.
    Davis J; Molnar E; Novosselov I
    Carbon N Y; 2020 Apr; 159():255-265. PubMed ID: 32863394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sooting tendencies of oxygenated hydrocarbons in laboratory-scale flames.
    McEnally CS; Pfefferle LD
    Environ Sci Technol; 2011 Mar; 45(6):2498-503. PubMed ID: 21329344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of diluent gases on sooting transition process in ethylene counterflow diffusion flames.
    Su Z; Ying Y; Chen C; Zhao R; Zhao X; Liu D
    RSC Adv; 2022 Jun; 12(28):18181-18196. PubMed ID: 35800317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Investigation of Negative Temperature Coefficient Effects on Sooting Characteristics in a Laminar Co-flow Diffusion Flame.
    Wu H; Hu Z; Dong X; Zhang S; Cao Z; Lin SL
    ACS Omega; 2021 Jun; 6(23):15156-15167. PubMed ID: 34151095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames.
    Vargas AM; Gülder ÖL
    Rev Sci Instrum; 2016 May; 87(5):055101. PubMed ID: 27250464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames.
    Sorensen CM; Cai J; Lu N
    Appl Opt; 1992 Oct; 31(30):6547-57. PubMed ID: 20733873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of fractal dimension of DLCA clusters on size of primary particles.
    Wu H; Lattuada M; Morbidelli M
    Adv Colloid Interface Sci; 2013 Jul; 195-196():41-9. PubMed ID: 23623300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames.
    Ren T; Zhou Y; Wang Q; Liu H; Li Z; Zhao C
    Opt Express; 2021 Jan; 29(2):1678-1693. PubMed ID: 33726377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations.
    di Stasio S; Konstandopoulos AG; Kostoglou M
    J Colloid Interface Sci; 2002 Mar; 247(1):33-46. PubMed ID: 16290438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ammonia on morphological characteristics and nanostructure of soot in the combustion of diesel surrogate fuels.
    Zhang K; Xu Y; Li Y; Liu Y; Wang B; Wang H; Ma J; Cheng X
    J Hazard Mater; 2023 Mar; 445():130645. PubMed ID: 37056027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a hybrid constraint spectral thermometry for laminar sooting flames.
    Du W; Wen D; Ma L; Wang Y
    Appl Opt; 2022 Oct; 61(28):8341-8353. PubMed ID: 36256147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.