These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15969414)

  • 1. Effect of ionic strength on the binding of alpha-chymotrypsin to nanoparticle receptors.
    Verma A; Simard JM; Rotello VM
    Langmuir; 2004 May; 20(10):4178-81. PubMed ID: 15969414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible regulation of chymotrypsin activity using negatively charged gold nanoparticles featuring malonic acid termini.
    Simard JM; Szymanski B; Rotello VM
    Med Chem; 2005 Mar; 1(2):153-7. PubMed ID: 16787310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors.
    Fischer NO; McIntosh CM; Simard JM; Rotello VM
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5018-23. PubMed ID: 11929986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds.
    Hong R; Fischer NO; Verma A; Goodman CM; Emrick T; Rotello VM
    J Am Chem Soc; 2004 Jan; 126(3):739-43. PubMed ID: 14733547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles.
    You CC; De M; Han G; Rotello VM
    J Am Chem Soc; 2005 Sep; 127(37):12873-81. PubMed ID: 16159281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible "irreversible" inhibition of chymotrypsin using nanoparticle receptors.
    Fischer NO; Verma A; Goodman CM; Simard JM; Rotello VM
    J Am Chem Soc; 2003 Nov; 125(44):13387-91. PubMed ID: 14583034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ionic strength on the kinetics of trypsin and alpha chymotrypsin.
    CASTANEDA-AGULLO M; DEL CASTILLO LM; WHITAKER JR; TAPPEL AL
    J Gen Physiol; 1961 Jul; 44(6):1103-20. PubMed ID: 13691379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the Surface Functional Group Density on the Carbon-Nanotube-Induced α-Chymotrypsin Structure and Activity Alterations.
    Zhao X; Hao F; Lu D; Liu W; Zhou Q; Jiang G
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18880-90. PubMed ID: 26248557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold: implications in modulating protein function.
    Sandanaraj BS; Vutukuri DR; Simard JM; Klaikherd A; Hong R; Rotello VM; Thayumanavan S
    J Am Chem Soc; 2005 Aug; 127(30):10693-8. PubMed ID: 16045357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents.
    Han G; Martin CT; Rotello VM
    Chem Biol Drug Des; 2006 Jan; 67(1):78-82. PubMed ID: 16492152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting effects of exterior and interior hydrophobic moieties in the complexation of amino acid functionalized gold clusters with alpha-chymotrypsin.
    You CC; De M; Rotello VM
    Org Lett; 2005 Dec; 7(25):5685-8. PubMed ID: 16321022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolayer-controlled substrate selectivity using noncovalent enzyme-nanoparticle conjugates.
    Hong R; Emrick T; Rotello VM
    J Am Chem Soc; 2004 Oct; 126(42):13572-3. PubMed ID: 15493887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning substrate selectivity of a cationic enzyme using cationic polymers.
    Roy R; Sandanaraj BS; Klaikherd A; Thayumanavan S
    Langmuir; 2006 Aug; 22(18):7695-700. PubMed ID: 16922552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin.
    De M; Chou SS; Dravid VP
    J Am Chem Soc; 2011 Nov; 133(44):17524-7. PubMed ID: 21954932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Metal-Organic Framework Nanosheets as an Enzyme Inhibitor: Modulation of the α-Chymotrypsin Activity.
    Xu M; Yuan S; Chen XY; Chang YJ; Day G; Gu ZY; Zhou HC
    J Am Chem Soc; 2017 Jun; 139(24):8312-8319. PubMed ID: 28538098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione.
    Han G; Chari NS; Verma A; Hong R; Martin CT; Rotello VM
    Bioconjug Chem; 2005; 16(6):1356-9. PubMed ID: 16287230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme activity of α-chymotrypsin: Deactivation by gold nano-cluster and reactivation by glutathione.
    Ghosh C; Mondal T; Bhattacharyya K
    J Colloid Interface Sci; 2017 May; 494():74-81. PubMed ID: 28135630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exfoliated Nanosheets of a Cu
    Sarkar K; Dastidar P
    Chemistry; 2018 Aug; 24(44):11297-11302. PubMed ID: 29888818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediating electrostatic binding of 1-butyl-3-methylimidazolium chloride to enzyme surfaces improves conformational stability.
    Nordwald EM; Kaar JL
    J Phys Chem B; 2013 Aug; 117(30):8977-86. PubMed ID: 23822219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of electrostatic interactions in 2,2,2-trifluoroethanol-induced structural changes and aggregation of alpha-chymotrypsin.
    Rezaei-Ghaleh N; Ebrahim-Habibi A; Moosavi-Movahedi AA; Nemat-Gorgani M
    Arch Biochem Biophys; 2007 Jan; 457(2):160-9. PubMed ID: 17141725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.