BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 15969595)

  • 1. Conservation of mus-ms enzyme motions in the apo- and substrate-mimicked state.
    Beach H; Cole R; Gill ML; Loria JP
    J Am Chem Soc; 2005 Jun; 127(25):9167-76. PubMed ID: 15969595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of the backbone dynamics of ribonuclease A in the ground state and bound to the inhibitor 5'-phosphothymidine (3'-5')pyrophosphate adenosine 3'-phosphate.
    Kovrigin EL; Cole R; Loria JP
    Biochemistry; 2003 May; 42(18):5279-91. PubMed ID: 12731869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site loop motion in triosephosphate isomerase: T-jump relaxation spectroscopy of thermal activation.
    Desamero R; Rozovsky S; Zhadin N; McDermott A; Callender R
    Biochemistry; 2003 Mar; 42(10):2941-51. PubMed ID: 12627960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease.
    Huang YT; Liaw YC; Gorbatyuk VY; Huang TH
    J Mol Biol; 2001 Apr; 307(4):1075-90. PubMed ID: 11286557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics.
    Rozovsky S; Jogl G; Tong L; McDermott AE
    J Mol Biol; 2001 Jun; 310(1):271-80. PubMed ID: 11419952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global and local motions in ribonuclease A: a molecular dynamics study.
    Merlino A; Vitagliano L; Ceruso MA; Di Nola A; Mazzarella L
    Biopolymers; 2002 Nov; 65(4):274-83. PubMed ID: 12382288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme dynamics along the reaction coordinate: critical role of a conserved residue.
    Kovrigin EL; Loria JP
    Biochemistry; 2006 Feb; 45(8):2636-47. PubMed ID: 16489757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Escherichia coli tryptophanase.
    Ku SY; Yip P; Howell PL
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):814-23. PubMed ID: 16790938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of the conformational transitions in the assembling of the Michaelis complex of a bisubstrate enzyme: a (15)N relaxation study of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase.
    Lescop E; Lu Z; Liu Q; Xu H; Li G; Xia B; Yan H; Jin C
    Biochemistry; 2009 Jan; 48(2):302-12. PubMed ID: 19108643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into catalytically relevant correlated motions in human purine nucleoside phosphorylase.
    Núñez S; Wing C; Antoniou D; Schramm VL; Schwartz SD
    J Phys Chem A; 2006 Jan; 110(2):463-72. PubMed ID: 16405318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The solution structure and dynamics of human pancreatic ribonuclease determined by NMR spectroscopy provide insight into its remarkable biological activities and inhibition.
    Kövér KE; Bruix M; Santoro J; Batta G; Laurents DV; Rico M
    J Mol Biol; 2008 Jun; 379(5):953-65. PubMed ID: 18495155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of hydrogen bonding in the vicinity of histidine 48 disrupts millisecond motions in RNase A.
    Doucet N; Khirich G; Kovrigin EL; Loria JP
    Biochemistry; 2011 Mar; 50(10):1723-30. PubMed ID: 21250662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of ribonuclease A complexes with 5'-diphosphoadenosine 3'-phosphate and 5'-diphosphoadenosine 2'-phosphate at 1.7 A resolution.
    Leonidas DD; Shapiro R; Irons LI; Russo N; Acharya KR
    Biochemistry; 1997 May; 36(18):5578-88. PubMed ID: 9154942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain motions and the open-to-closed conformational transition of an enzyme: a normal mode analysis of S-adenosyl-L-homocysteine hydrolase.
    Wang M; Borchardt RT; Schowen RL; Kuczera K
    Biochemistry; 2005 May; 44(19):7228-39. PubMed ID: 15882061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates.
    Scheuring J; Fischer M; Cushman M; Lee J; Bacher A; Oschkinat H
    Biochemistry; 1996 Jul; 35(30):9637-46. PubMed ID: 8703935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward rational design of ribonuclease inhibitors: high-resolution crystal structure of a ribonuclease A complex with a potent 3',5'-pyrophosphate-linked dinucleotide inhibitor.
    Leonidas DD; Shapiro R; Irons LI; Russo N; Acharya KR
    Biochemistry; 1999 Aug; 38(32):10287-97. PubMed ID: 10441122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Pseudomonas aeruginosa in its Apo and substrate-complexed forms reveals a fully open conformation.
    Yoon HJ; Kim HL; Mikami B; Suh SW
    J Mol Biol; 2005 Aug; 351(2):258-65. PubMed ID: 16009375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coulombic effects of remote subsites on the active site of ribonuclease A.
    Fisher BM; Schultz LW; Raines RT
    Biochemistry; 1998 Dec; 37(50):17386-401. PubMed ID: 9860854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.