These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15970969)

  • 1. Imaging of peptide adsorption to microfluidic channels in a plastic compact disc using a positron emitting radionuclide.
    Lavén M; Velikyan I; Djodjic M; Ljung J; Berglund O; Markides K; Långström B; Wallenborg S
    Lab Chip; 2005 Jul; 5(7):756-63. PubMed ID: 15970969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radionuclide imaging of miniaturized chemical analysis systems.
    Lavén M; Wallenborg S; Velikyan I; Bergström S; Djodjic M; Ljung J; Berglund O; Edenwall N; Markides KE; Långström B
    Anal Chem; 2004 Dec; 76(23):7102-8. PubMed ID: 15571365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption kinetics of proteins in plastic microfluidic channels: real-time monitoring of lysozyme adsorption by pulsed streaming potentials.
    Luna-Vera F; Alvarez JC
    Biosens Bioelectron; 2010 Feb; 25(6):1539-43. PubMed ID: 19951837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for characterizing adsorption of flowing solutes to microfluidic device surfaces.
    Hawkins KR; Steedman MR; Baldwin RR; Fu E; Ghosal S; Yager P
    Lab Chip; 2007 Feb; 7(2):281-5. PubMed ID: 17268632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA.
    Salim M; O'Sullivan B; McArthur SL; Wright PC
    Lab Chip; 2007 Jan; 7(1):64-70. PubMed ID: 17180206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shrink film patterning by craft cutter: complete plastic chips with high resolution/high-aspect ratio channel.
    Taylor D; Dyer D; Lew V; Khine M
    Lab Chip; 2010 Sep; 10(18):2472-5. PubMed ID: 20680207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule transport, concentration and alignment in enclosed microfluidic channels.
    Huang YM; Uppalapati M; Hancock WO; Jackson TN
    Biomed Microdevices; 2007 Apr; 9(2):175-84. PubMed ID: 17195111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption-resistant acrylic copolymer for prototyping of microfluidic devices for proteins and peptides.
    Liu J; Sun X; Lee ML
    Anal Chem; 2007 Mar; 79(5):1926-31. PubMed ID: 17249641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of chemical-polymer surface interactions in microfluidic cell culture devices.
    Xu H; Shuler ML
    Biotechnol Prog; 2009; 25(2):543-51. PubMed ID: 19358211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of nucleic acid adsorption on 3D prisms in microchannels.
    Hu Y; Li D
    Anal Chim Acta; 2007 Jan; 581(1):42-52. PubMed ID: 17386424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixing with bubbles: a practical technology for use with portable microfluidic devices.
    Garstecki P; J Fuerstman M; Fischbach MA; Sia SK; Whitesides GM
    Lab Chip; 2006 Feb; 6(2):207-12. PubMed ID: 16450029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces.
    Salim M; Wright PC; McArthur SL
    Electrophoresis; 2009 Jun; 30(11):1877-87. PubMed ID: 19517430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of buffer acidity and surfactant chain-length on electro-osmotic mobility in thermoplastic microchannels.
    Wang SC; Lee CY; Chen HP
    Biosens Bioelectron; 2005 Apr; 20(10):2126-30. PubMed ID: 15741085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings.
    Chen HY; Lahann J
    Anal Chem; 2005 Nov; 77(21):6909-14. PubMed ID: 16255589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyurethane-based microfluidic devices for blood contacting applications.
    Wu WI; Sask KN; Brash JL; Selvaganapathy PR
    Lab Chip; 2012 Mar; 12(5):960-70. PubMed ID: 22273592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis.
    Liu J; Lee ML
    Electrophoresis; 2006 Sep; 27(18):3533-46. PubMed ID: 16927422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.