These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15971294)

  • 1. Formation and stability of oxocarbenium ions from glycosides.
    Denekamp C; Sandlers Y
    J Mass Spectrom; 2005 Aug; 40(8):1055-63. PubMed ID: 15971294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Could diastereoselectivity in the presence of O-2 chiral nonparticipating groups be an indicator of glycopyranosyl oxacarbenium ions in glycosylation reactions?
    Kumar R; Whitfield DM
    J Org Chem; 2012 Apr; 77(8):3724-39. PubMed ID: 22428576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations into the role of ion pairing in reactions of heteroatom-substituted cyclic oxocarbenium ions.
    Shenoy SR; Woerpel KA
    Org Lett; 2005 Mar; 7(6):1157-60. PubMed ID: 15760163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of a chemical glycosylation reaction.
    Crich D
    Acc Chem Res; 2010 Aug; 43(8):1144-53. PubMed ID: 20496888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomeric distinction and oxonium ion formation in acetylated glycosides.
    Denekamp C; Sandlers Y
    J Mass Spectrom; 2005 Jun; 40(6):765-71. PubMed ID: 15827958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosyl Oxocarbenium Ions: Structure, Conformation, Reactivity, and Interactions.
    Franconetti A; Ardá A; Asensio JL; Blériot Y; Thibaudeau S; Jiménez-Barbero J
    Acc Chem Res; 2021 Jun; 54(11):2552-2564. PubMed ID: 33930267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using nucleophilic substitution reactions to understand how a remote alkyl or alkoxy substituent influences the conformation of eight-membered ring oxocarbenium ions.
    Chamberland S; Woerpel KA
    Org Lett; 2004 Dec; 6(25):4739-41. PubMed ID: 15575674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using stereoelectronic effects to explain selective reactions of 4-substituted five-membered ring oxocarbenium ions.
    Smith DM; Woerpel KA
    Org Lett; 2004 Jun; 6(12):2063-6. PubMed ID: 15176819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of electron-withdrawing protecting groups at remote positions of donors on glycosylation stereochemistry.
    Kim KS; Suk DH
    Top Curr Chem; 2011; 301():109-40. PubMed ID: 21229347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Experimental Evidence in Support of Glycosylation Mechanisms at the S
    Adero PO; Amarasekara H; Wen P; Bohé L; Crich D
    Chem Rev; 2018 Sep; 118(17):8242-8284. PubMed ID: 29846062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational insight into the reaction intermediates in the glycosylation reaction assisted by donor heteroatoms.
    Bravo F; Viso A; Alcázar E; Molas P; Bo C; Castillón S
    J Org Chem; 2003 Feb; 68(3):686-91. PubMed ID: 12558386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT studies of the role of C-2-O-2 bond rotation in neighboring-group glycosylation reactions.
    Whitfield DM; Nukada T
    Carbohydr Res; 2007 Jul; 342(10):1291-304. PubMed ID: 17477909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereochemistry of nucleophilic substitution reactions depending upon substituent: evidence for electrostatic stabilization of pseudoaxial conformers of oxocarbenium ions by heteroatom substituents.
    Ayala L; Lucero CG; Romero JA; Tabacco SA; Woerpel KA
    J Am Chem Soc; 2003 Dec; 125(50):15521-8. PubMed ID: 14664599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors controlling the alkyne prins cyclization: the stability of dihydropyranyl cations.
    Miranda PO; Ramírez MA; Martín VS; Padrón JI
    Chemistry; 2008; 14(20):6260-8. PubMed ID: 18512867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neighboring group participation of 9-anthracenylmethyl group in glycosylation: preparation of unusual C-glycosides.
    Kulkarni SS; Liu YH; Hung SC
    J Org Chem; 2005 Apr; 70(7):2808-11. PubMed ID: 15787575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of alkoxycarbenium ion pools from thioacetals and applications to glycosylation chemistry.
    Suzuki S; Matsumoto K; Kawamura K; Suga S; Yoshida J
    Org Lett; 2004 Oct; 6(21):3755-8. PubMed ID: 15469341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular mechanism of enzymatic glycosyl transfer with retention of configuration: evidence for a short-lived oxocarbenium-like species.
    Ardèvol A; Rovira C
    Angew Chem Int Ed Engl; 2011 Nov; 50(46):10897-901. PubMed ID: 21953735
    [No Abstract]   [Full Text] [Related]  

  • 18. A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art.
    Bohé L; Crich D
    Carbohydr Res; 2015 Feb; 403():48-59. PubMed ID: 25108484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of unsymmetrically annelated imidazol-2-ylidenes with respect to their higher group 14 homologues by n-/pi-HOMO inversion.
    Ullah F; Bajor G; Veszprémi T; Jones PG; Heinicke JW
    Angew Chem Int Ed Engl; 2007; 46(15):2697-700. PubMed ID: 17330919
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural and Computational Analysis of 2-Halogeno-Glycosyl Cations in the Presence of a Superacid: An Expansive Platform.
    Lebedel L; Ardá A; Martin A; Désiré J; Mingot A; Aufiero M; Aiguabella Font N; Gilmour R; Jiménez-Barbero J; Blériot Y; Thibaudeau S
    Angew Chem Int Ed Engl; 2019 Sep; 58(39):13758-13762. PubMed ID: 31348606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.