BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 15971614)

  • 1. [Metabolic flux analysis of L-valine fermentation in Corynebacterium glutamicum].
    Li XM; Li NQ; Yang Y; Jiang XL; Qiu YJ; Zhang XY
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):403-7. PubMed ID: 15971614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production.
    Lai S; Zhang Y; Liu S; Liang Y; Shang X; Chai X; Wen T
    Sci China Life Sci; 2012 Apr; 55(4):283-90. PubMed ID: 22566084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Metabolic flux analysis of L-Tryptophan biosynthesis].
    Wang J; Chen N; Zhang B; Tan Q; Zhang K
    Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):473-80. PubMed ID: 16276922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing
    Ma Y; Chen Q; Cui Y; Du L; Shi T; Xu Q; Ma Q; Xie X; Chen N
    J Microbiol Biotechnol; 2018 Nov; 28(11):1916-1927. PubMed ID: 30562884
    [No Abstract]   [Full Text] [Related]  

  • 5. Corynebacterium glutamicum tailored for high-yield L-valine production.
    Blombach B; Schreiner ME; Bartek T; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):471-9. PubMed ID: 18379776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Corynebacterium glutamicum for the production of pyruvate.
    Wieschalka S; Blombach B; Eikmanns BJ
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):449-59. PubMed ID: 22228312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum.
    Hayashi M; Mizoguchi H; Ohnishi J; Mitsuhashi S; Yonetani Y; Hashimoto S; Ikeda M
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):783-9. PubMed ID: 16944136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance L-leucine production.
    Wang YY; Shi K; Chen P; Zhang F; Xu JZ; Zhang WG
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):485-495. PubMed ID: 32535763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of L-valine from metabolically engineered Corynebacterium glutamicum.
    Wang X; Zhang H; Quinn PJ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4319-4330. PubMed ID: 29594358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum.
    Ohnishi J; Katahira R; Mitsuhashi S; Kakita S; Ikeda M
    FEMS Microbiol Lett; 2005 Jan; 242(2):265-74. PubMed ID: 15621447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of model discriminating experimental design for modeling and development of a fermentative fed-batch L-valine production process.
    Brik Ternbach M; Bollman C; Wandrey C; Takors R
    Biotechnol Bioeng; 2005 Aug; 91(3):356-68. PubMed ID: 15984033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum.
    Bartek T; Blombach B; Zönnchen E; Makus P; Lang S; Eikmanns BJ; Oldiges M
    Biotechnol Prog; 2010; 26(2):361-71. PubMed ID: 20014412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Metabolic flux analysis of L-serine synthesis by Corynebacterium glutamicum SYPS-062].
    Zhang X; Dou W; Xu H; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1363-71. PubMed ID: 21218623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum.
    Hou X; Chen X; Zhang Y; Qian H; Zhang W
    Amino Acids; 2012 Dec; 43(6):2301-11. PubMed ID: 22552525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production].
    Zhang H; Li Y; Wang X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1606-1619. PubMed ID: 30394028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
    Holátko J; Elisáková V; Prouza M; Sobotka M; Nesvera J; Pátek M
    J Biotechnol; 2009 Feb; 139(3):203-10. PubMed ID: 19121344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis.
    Park JH; Kim TY; Lee KH; Lee SY
    Biotechnol Bioeng; 2011 Apr; 108(4):934-46. PubMed ID: 21404266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding.
    Ohnishi J; Hayashi M; Mitsuhashi S; Ikeda M
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):69-75. PubMed ID: 12835923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
    Blombach B; Schreiner ME; Moch M; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):615-23. PubMed ID: 17333167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.