These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15971698)

  • 21. A comparison of the fatigue behavior of human trabecular and cortical bone tissue.
    Choi K; Goldstein SA
    J Biomech; 1992 Dec; 25(12):1371-81. PubMed ID: 1491015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting fracture of the femoral neck.
    Stepanskiy L; Seliktar RR
    J Biomech; 2007; 40(8):1813-23. PubMed ID: 17046773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.
    Zioupos P; Hansen U; Currey JD
    J Biomech; 2008 Oct; 41(14):2932-9. PubMed ID: 18786670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture.
    Martin RB; Gibson VA; Stover SM; Gibeling JC; Griffin LV
    J Biomech; 1997 Feb; 30(2):109-14. PubMed ID: 9001930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatigue data analysis of canine femurs under four-point bending.
    Pidaparti RM; Akyuz U; Naick PA; Burr DB
    Biomed Mater Eng; 2000; 10(1):43-50. PubMed ID: 10950206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tensile damage and its effects on cortical bone.
    Kotha SP; Guzelsu N
    J Biomech; 2003 Nov; 36(11):1683-9. PubMed ID: 14522210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sex differences in long bone fatigue using a rat model.
    Moreno LD; Waldman SD; Grynpas MD
    J Orthop Res; 2006 Oct; 24(10):1926-32. PubMed ID: 16917903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatigue of bovine trabecular bone.
    Moore TL; Gibson LJ
    J Biomech Eng; 2003 Dec; 125(6):761-8. PubMed ID: 14986399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler.
    Zioupos P; Wang XT; Currey JD
    J Biomech; 1996 Aug; 29(8):989-1002. PubMed ID: 8817365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constitutive laws and failure models for compact bones subjected to dynamic loading.
    Pithioux M; Chabrand P; Jean M
    Comput Methods Biomech Biomed Engin; 2002 Oct; 5(5):351-9. PubMed ID: 12745432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cycle-dependent and time-dependent bone fracture with repeated loading.
    Carter DR; Caler WE
    J Biomech Eng; 1983 May; 105(2):166-70. PubMed ID: 6865359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strain patterns during tensile, compressive, and shear fatigue of human cortical bone and implications for bone biomechanics.
    Winwood K; Zioupos P; Currey JD; Cotton JR; Taylor M
    J Biomed Mater Res A; 2006 Nov; 79(2):289-97. PubMed ID: 16817209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Some viscoplastic characteristics of bovine and human cortical bone.
    Fondrk M; Bahniuk E; Davy DT; Michaels C
    J Biomech; 1988; 21(8):623-30. PubMed ID: 3170617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inelastic strain accumulation in cortical bone during rapid transient tensile loading.
    Fondrk MT; Bahniuk EH; Davy DT
    J Biomech Eng; 1999 Dec; 121(6):616-21. PubMed ID: 10633262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.