These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 15971702)
1. PIV measurements of flow in a centrifugal blood pump: steady flow. Day SW; McDaniel JC J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702 [TBL] [Abstract][Full Text] [Related]
2. PIV measurements of flow in a centrifugal blood pump: time-varying flow. Day SW; McDaniel JC J Biomech Eng; 2005 Apr; 127(2):254-63. PubMed ID: 15971703 [TBL] [Abstract][Full Text] [Related]
3. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
4. A prototype HeartQuest ventricular assist device for particle image velocimetry measurements. Day SW; McDaniel JC; Wood HG; Allaire PE; Song X; Lemire PP; Miles SD Artif Organs; 2002 Nov; 26(11):1002-5. PubMed ID: 12406161 [TBL] [Abstract][Full Text] [Related]
5. Numerical analysis of the inner flow field of a biocentrifugal blood pump. Chua LP; Song G; Lim TM; Zhou T Artif Organs; 2006 Jun; 30(6):467-77. PubMed ID: 16734599 [TBL] [Abstract][Full Text] [Related]
6. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles. Song G; Chua LP; Lim TM Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732 [TBL] [Abstract][Full Text] [Related]
7. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P; Du J; Yu S Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073 [TBL] [Abstract][Full Text] [Related]
8. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow Ventricular Assist Device (VAD). Song X; Wood HG; Olsen D J Biomech Eng; 2004 Apr; 126(2):180-7. PubMed ID: 15179847 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry. Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137 [TBL] [Abstract][Full Text] [Related]
10. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development. Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416 [TBL] [Abstract][Full Text] [Related]
11. Study of velocity and shear stress distributions in the impeller passages and the volute of a bio-centrifugal ventricular assist device. Chua LP; Ong KS; Song G Artif Organs; 2008 May; 32(5):376-87. PubMed ID: 18471167 [TBL] [Abstract][Full Text] [Related]
12. Flow rate estimation of a centrifugal blood pump using the passively stabilized eccentric position of a magnetically levitated impeller. Shida S; Masuzawa T; Osa M Int J Artif Organs; 2019 Jun; 42(6):291-298. PubMed ID: 30854913 [TBL] [Abstract][Full Text] [Related]
13. Wall shear-rate estimation within the 50cc Penn State artificial heart using particle image velocimetry. Hochareon P; Manning KB; Fontaine AA; Tarbell JM; Deutsch S J Biomech Eng; 2004 Aug; 126(4):430-7. PubMed ID: 15543860 [TBL] [Abstract][Full Text] [Related]
14. Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map. Shu F; Vandenberghe S; Brackett J; Antaki JF Cardiovasc Eng Technol; 2015 Sep; 6(3):230-41. PubMed ID: 26577357 [TBL] [Abstract][Full Text] [Related]
15. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447 [TBL] [Abstract][Full Text] [Related]
16. Effect of impeller rotational phase on the FDA blood pump velocity fields. Ucak K; Karatas F; Pekkan K Artif Organs; 2024 Oct; 48(10):1126-1137. PubMed ID: 38957988 [TBL] [Abstract][Full Text] [Related]
17. [Design of an axial blood pump of diffuser with splitter blades and cantilevered main blades]. Liu G; Xi J; Chen H; Zhang Y; Hou J; Zhou J; Sun H; Hu S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):379-385. PubMed ID: 31232539 [TBL] [Abstract][Full Text] [Related]
18. A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement. Wernicke JT; Meier D; Mizuguchi K; Damm G; Aber G; Benkowski R; Nosé Y; Noon GP; DeBakey ME Artif Organs; 1995 Feb; 19(2):161-77. PubMed ID: 7763196 [TBL] [Abstract][Full Text] [Related]
19. Development of a magnetically suspended centrifugal pump as a cardiac assist device for long-term application. Nishimura K; Park CH; Akamatsu T; Yamada T; Ban T ASAIO J; 1996; 42(1):68-71. PubMed ID: 8808462 [TBL] [Abstract][Full Text] [Related]
20. Experimental and Numerical Investigation of an Axial Rotary Blood Pump. Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]