BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15971841)

  • 1. Enabling proteomics discovery through visual analysis. The peptide permutation and protein prediction tool.
    Havre SL; Singhal M; Payne DA; Lipton MS; Webb-Robertson BJ
    IEEE Eng Med Biol Mag; 2005; 24(3):50-7. PubMed ID: 15971841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PQuad--a visual analysis platform for proteomic data exploration of microbial organisms.
    Webb-Robertson BJ; Peterson ES; Singhal M; Klicker KR; Oehmen CS; Adkins JN; Havre SL
    Bioinformatics; 2007 Jul; 23(13):1705-7. PubMed ID: 17483503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual analysis of gel-free proteome data.
    Linsen L; Löcherbach J; Berth M; Becher D; Bernhardt J
    IEEE Trans Vis Comput Graph; 2006; 12(4):497-508. PubMed ID: 16805259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pFind: a novel database-searching software system for automated peptide and protein identification via tandem mass spectrometry.
    Li D; Fu Y; Sun R; Ling CX; Wei Y; Zhou H; Zeng R; Yang Q; He S; Gao W
    Bioinformatics; 2005 Jul; 21(13):3049-50. PubMed ID: 15817687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MSDA, a proteomics software suite for in-depth Mass Spectrometry Data Analysis using grid computing.
    Carapito C; Burel A; Guterl P; Walter A; Varrier F; Bertile F; Van Dorsselaer A
    Proteomics; 2014 May; 14(9):1014-9. PubMed ID: 24677806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics support for high-throughput proteomics.
    Wilke A; Rückert C; Bartels D; Dondrup M; Goesmann A; Hüser AT; Kespohl S; Linke B; Mahne M; McHardy A; Pühler A; Meyer F
    J Biotechnol; 2003 Dec; 106(2-3):147-56. PubMed ID: 14651857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pFind 2.0: a software package for peptide and protein identification via tandem mass spectrometry.
    Wang LH; Li DQ; Fu Y; Wang HP; Zhang JF; Yuan ZF; Sun RX; Zeng R; He SM; Gao W
    Rapid Commun Mass Spectrom; 2007; 21(18):2985-91. PubMed ID: 17702057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the ETD/PTR reactions in top-down proteomics as a faster alternative to bottom-up nanoLC-MS/MS protein identification.
    Drabik A; Bodzon-Kulakowska A; Suder P
    J Mass Spectrom; 2012 Oct; 47(10):1347-52. PubMed ID: 23019167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeNovoID: a web-based tool for identifying peptides from sequence and mass tags deduced from de novo peptide sequencing by mass spectroscopy.
    Halligan BD; Ruotti V; Twigger SN; Greene AS
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W376-81. PubMed ID: 15980493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward high-throughput and reliable peptide identification via MS/MS spectra.
    Liu J
    Methods Mol Biol; 2008; 484():333-44. PubMed ID: 18592190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PROTEIOS: an open source proteomics initiative.
    Gärdén P; Alm R; Häkkinen J
    Bioinformatics; 2005 May; 21(9):2085-7. PubMed ID: 15691852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial neural network analysis for evaluation of peptide MS/MS spectra in proteomics.
    Baczek T; Buciński A; Ivanov AR; Kaliszan R
    Anal Chem; 2004 Mar; 76(6):1726-32. PubMed ID: 15018575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass analysis peptide sequence prediction (MAPSP).
    Eisenacher M; de Braaf J; König S
    Bioinformatics; 2006 Apr; 22(8):1002-3. PubMed ID: 16500935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational prediction of proteotypic peptides for quantitative proteomics.
    Mallick P; Schirle M; Chen SS; Flory MR; Lee H; Martin D; Ranish J; Raught B; Schmitt R; Werner T; Kuster B; Aebersold R
    Nat Biotechnol; 2007 Jan; 25(1):125-31. PubMed ID: 17195840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS.
    Bellew M; Coram M; Fitzgibbon M; Igra M; Randolph T; Wang P; May D; Eng J; Fang R; Lin C; Chen J; Goodlett D; Whiteaker J; Paulovich A; McIntosh M
    Bioinformatics; 2006 Aug; 22(15):1902-9. PubMed ID: 16766559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CHOMPER: a bioinformatic tool for rapid validation of tandem mass spectrometry search results associated with high-throughput proteomic strategies.
    Eddes JS; Kapp EA; Frecklington DF; Connolly LM; Layton MJ; Moritz RL; Simpson RJ
    Proteomics; 2002 Sep; 2(9):1097-103. PubMed ID: 12362328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline.
    Keller A; Shteynberg D
    Methods Mol Biol; 2011; 694():169-89. PubMed ID: 21082435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.
    Goeminne LJE; Gevaert K; Clement L
    J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo sequencing methods in proteomics.
    Hughes C; Ma B; Lajoie GA
    Methods Mol Biol; 2010; 604():105-21. PubMed ID: 20013367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.