BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 15971936)

  • 1. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography.
    Weisz N; Moratti S; Meinzer M; Dohrmann K; Elbert T
    PLoS Med; 2005 Jun; 2(6):e153. PubMed ID: 15971936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal auditory mismatch response in tinnitus sufferers with high-frequency hearing loss is associated with subjective distress level.
    Weisz N; Voss S; Berg P; Elbert T
    BMC Neurosci; 2004 Mar; 5():8. PubMed ID: 15113455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Psychoacoustic tinnitus loudness and tinnitus-related distress show different associations with oscillatory brain activity.
    Balkenhol T; Wallhäusser-Franke E; Delb W
    PLoS One; 2013; 8(1):e53180. PubMed ID: 23326394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power.
    Kahlbrock N; Weisz N
    BMC Biol; 2008 Jan; 6():4. PubMed ID: 18199318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neural code of auditory phantom perception.
    Weisz N; Müller S; Schlee W; Dohrmann K; Hartmann T; Elbert T
    J Neurosci; 2007 Feb; 27(6):1479-84. PubMed ID: 17287523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pros and cons in tinnitus brain: Enhancement of global connectivity for alpha and delta waves.
    Li YH; Chi TS; Shiao AS; Li LP; Hsieh JC
    Prog Neuropsychopharmacol Biol Psychiatry; 2022 Apr; 115():110497. PubMed ID: 34922998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromagnetic indicators of auditory cortical reorganization of tinnitus.
    Weisz N; Wienbruch C; Dohrmann K; Elbert T
    Brain; 2005 Nov; 128(Pt 11):2722-31. PubMed ID: 16014655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromagnetic indicators of tinnitus and tinnitus masking in patients with and without hearing loss.
    Adjamian P; Sereda M; Zobay O; Hall DA; Palmer AR
    J Assoc Res Otolaryngol; 2012 Oct; 13(5):715-31. PubMed ID: 22791191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical Reorganisation during a 30-Week Tinnitus Treatment Program.
    McMahon CM; Ibrahim RK; Mathur A
    PLoS One; 2016; 11(2):e0148828. PubMed ID: 26901425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hypothetical relation between the degree of stress and auditory cortical evoked potentials in tinnitus sufferers.
    Moossavi A; Sadeghijam M; Akbari M
    Med Hypotheses; 2019 Sep; 130():109266. PubMed ID: 31383346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech perception in tinnitus is related to individual distress level - A neurophysiological study.
    Jagoda L; Giroud N; Neff P; Kegel A; Kleinjung T; Meyer M
    Hear Res; 2018 Sep; 367():48-58. PubMed ID: 30031353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurofeedback for tinnitus: study protocol for a randomised controlled trial assessing the specificity of an alpha/delta neurofeedback training protocol in alleviating both sound perception and psychological distress in a cohort of chronic tinnitus sufferers.
    Jensen M; Hüttenrauch E; Schmidt J; Andersson G; Chavanon ML; Weise C
    Trials; 2020 May; 21(1):382. PubMed ID: 32370767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural correlates of tinnitus-related distress.
    Vanneste S; Plazier M; der Loo Ev; de Heyning PV; Congedo M; De Ridder D
    Neuroimage; 2010 Aug; 52(2):470-80. PubMed ID: 20417285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological correlates of focused attention on low- and high-distressed tinnitus.
    Milner R; Lewandowska M; Ganc M; Nikadon J; Niedziałek I; Jędrzejczak WW; Skarżyński H
    PLoS One; 2020; 15(8):e0236521. PubMed ID: 32756593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of neurofeedback on oscillatory processes related to tinnitus.
    Hartmann T; Lorenz I; Müller N; Langguth B; Weisz N
    Brain Topogr; 2014 Jan; 27(1):149-57. PubMed ID: 23700271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid increases of gamma power in the auditory cortex following noise trauma in humans.
    Ortmann M; Müller N; Schlee W; Weisz N
    Eur J Neurosci; 2011 Feb; 33(3):568-75. PubMed ID: 21198988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus.
    Wienbruch C; Paul I; Weisz N; Elbert T; Roberts LE
    Neuroimage; 2006 Oct; 33(1):180-94. PubMed ID: 16901722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity.
    Hyvärinen P; Yrttiaho S; Lehtimäki J; Ilmoniemi RJ; Mäkitie A; Ylikoski J; Mäkelä JP; Aarnisalo AA
    Ear Hear; 2015; 36(3):e76-85. PubMed ID: 25437140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus.
    Ahn MH; Hong SK; Min BK
    Hear Res; 2017 Dec; 356():63-73. PubMed ID: 29097049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural correlates of tinnitus related distress: an fMRI-study.
    Golm D; Schmidt-Samoa C; Dechent P; Kröner-Herwig B
    Hear Res; 2013 Jan; 295():87-99. PubMed ID: 22445697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.