These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 159721)

  • 21. Equilibrium of phosphointermediates of sodium and potassium ion transport adenosine triphosphatase: action of sodium ion and Hofmeister effect.
    Suzuki K; Post RL
    J Gen Physiol; 1997 May; 109(5):537-54. PubMed ID: 9154903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sodium ions, acting at high-affinity extracellular sites, inhibit sodium-ATPase activity of the sodium pump by slowing dephosphorylation.
    Beaugé LA; Glynn IM
    J Physiol; 1979 Apr; 289():17-31. PubMed ID: 222896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of phosphoenzyme formation from phosphate and sarcoplasmic reticulum Ca(2+)-ATPase by vanadate binding to high- or low-affinity site on the enzyme.
    Yamasaki K; Yamamoto T
    J Biochem; 1992 Nov; 112(5):658-64. PubMed ID: 1478926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interference with phosphoenzyme isomerization and inhibition of the sarco-endoplasmic reticulum Ca2+ ATPase by 1,3-dibromo-2,4,6-tris(methylisothiouronium) benzene.
    Hua S; Xu C; Ma H; Inesi G
    J Biol Chem; 2005 May; 280(18):17579-83. PubMed ID: 15746094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation of adenosine triphosphatase activity of sarcoplasmic reticulum by adenylyl methylene diphosphate.
    Shigekawa M; Akowitz AA; Katz AM
    Biochim Biophys Acta; 1978 Oct; 526(2):591-6. PubMed ID: 152652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulatory and inhibitory effects of dimethyl sulfoxide and ethylene glycol on ATPase activity and calcium transport of sarcoplasmic membranes.
    The R; Hasselbach W
    Eur J Biochem; 1977 Apr; 74(3):611-21. PubMed ID: 192554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanism of chlorpromazine and quinidine inhibition of cardiac sarcotubular ATPase.
    Pang DC; Briggs FN
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():421-4. PubMed ID: 131963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. K(+)- and Mg2(+)-dependent hydrolysis of acetyl phosphate catalyzed by the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum.
    Chini EN; Montero-Lomeli M; de Meis L
    Biochim Biophys Acta; 1990 Nov; 1030(1):152-6. PubMed ID: 2148270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of the ADP-insensitive phosphoenzyme intermediate in the sarcoplasmic reticulum Ca2+-ATPase of which both Cys344 and Cys364 are modified by N-ethylmaleimide.
    Suzuki H; Kanazawa T
    Biochemistry; 1999 Jan; 38(2):820-5. PubMed ID: 9888823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct demonstration of an acid-labile phosphoenzyme in the cycle of the sarcoplasmic reticulum Ca2(+)-dependent adenosinetriphosphatase.
    Alonso GL; Takara D; González DA
    Biochim Biophys Acta; 1990 Nov; 1030(1):172-5. PubMed ID: 2148271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intermolecular conformational coupling and free energy exchange enhance the catalytic efficiency of cardiac muscle SERCA2a following the relief of phospholamban inhibition.
    Mahaney JE; Albers RW; Waggoner JR; Kutchai HC; Froehlich JP
    Biochemistry; 2005 May; 44(21):7713-24. PubMed ID: 15909986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sarcoplasmic reticulum Ca-ATPase: distinction of phosphoenzymes formed from MgATP and CaATP as substrates and interconversion of the phosphoenzymes by Mg2+ and Ca2+.
    Yamada S; Fujii J; Katayama H
    J Biochem; 1986 Nov; 100(5):1329-42. PubMed ID: 2950082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ADP- and Mg2+-reactive calcium complex of the phosphoenzyme in skeletal sarcoplasmic reticulum Ca2+-ATPase.
    Nakamura J
    Biochim Biophys Acta; 1983 May; 723(2):182-90. PubMed ID: 6221757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase.
    Verjovski-Almeida S; Kurzmack M; Inesi G
    Biochemistry; 1978 Nov; 17(23):5006-13. PubMed ID: 152642
    [No Abstract]   [Full Text] [Related]  

  • 36. Some kinetic properties of phosphorylated ATPase of sarcoplasmic reticulum formed in the absence of added alkali metal salts.
    Shigekawa M; Dougherty JP
    Biochem Biophys Res Commun; 1977 Jun; 76(3):784-9. PubMed ID: 143281
    [No Abstract]   [Full Text] [Related]  

  • 37. Order of release of ADP and Pi from phosphoenzyme with bound ADP of Ca2+-dependent ATPase from sarcoplasmic reticulum and of Na+, K+-dependent ATPase studied by ADP-inhibition patterns.
    Sakamoto J; Tonomura Y
    J Biochem; 1980 Jun; 87(6):1721-7. PubMed ID: 6249798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. II. Kinetic characterization of phosphointermediates.
    Klodos I; Nørby JG; Plesner IW
    Biochim Biophys Acta; 1981 May; 643(2):463-82. PubMed ID: 6261817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between ouabain and the phosphorylated intermediate of Na,K-ATPase.
    Yoda A; Yoda S
    Mol Pharmacol; 1982 Nov; 22(3):700-5. PubMed ID: 6296661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of helper enzymes for ADP removal in infrared spectroscopic experiments: application to Ca2+-ATPase.
    Liu M; Karjalainen EL; Barth A
    Biophys J; 2005 May; 88(5):3615-24. PubMed ID: 15731382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.