These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15972599)

  • 1. Anode glow discharge plasma treatment of titanium plates facilitates adsorption of extracellular matrix proteins to the plates.
    Yamamoto H; Shibata Y; Miyazaki T
    J Dent Res; 2005 Jul; 84(7):668-71. PubMed ID: 15972599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anode glow discharge plasma treatment enhances calcium phosphate adsorption onto titanium plates.
    Shibata Y; Miyazaki T
    J Dent Res; 2002 Dec; 81(12):841-4. PubMed ID: 12454099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glow discharge plasma treatment of titanium plates enhances adhesion of osteoblast-like cells to the plates through the integrin-mediated mechanism.
    Shibata Y; Hosaka M; Kawai H; Miyazaki T
    Int J Oral Maxillofac Implants; 2002; 17(6):771-7. PubMed ID: 12507235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface analysis of titanium biological modification with glow discharge.
    Chang YC; Feng SW; Huang HM; Teng NC; Lin CT; Lin HK; Wang PD; Chang WJ
    Clin Implant Dent Relat Res; 2015 Jun; 17(3):469-75. PubMed ID: 23981288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type I collagen grafting on titanium surfaces using low-temperature glow discharge.
    Chang WJ; Ou KL; Lee SY; Chen JY; Abiko Y; Lin CT; Huang HM
    Dent Mater J; 2008 May; 27(3):340-6. PubMed ID: 18717160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibronectin-Grafted Titanium Dental Implants: An In Vivo Study.
    Chang YC; Ho KN; Feng SW; Huang HM; Chang CH; Lin CT; Teng NC; Pan YH; Chang WJ
    Biomed Res Int; 2016; 2016():2414809. PubMed ID: 27366739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of human plasma proteins to modified titanium surfaces.
    Sela MN; Badihi L; Rosen G; Steinberg D; Kohavi D
    Clin Oral Implants Res; 2007 Oct; 18(5):630-8. PubMed ID: 17484735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glow discharge plasma pretreatment enhances osteoclast differentiation and survival on titanium plates.
    Kawai H; Shibata Y; Miyazaki T
    Biomaterials; 2004 May; 25(10):1805-11. PubMed ID: 14738844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion.
    Feng B; Weng J; Yang BC; Qu SX; Zhang XD
    Biomaterials; 2004 Aug; 25(17):3421-8. PubMed ID: 15020115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Analysis of Fibronectin-Modified Titanium Surfaces.
    Chang YC; Lee WF; Feng SW; Huang HM; Lin CT; Teng NC; Chang WJ
    PLoS One; 2016; 11(1):e0146219. PubMed ID: 26731536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications.
    Beline T; Marques Ida S; Matos AO; Ogawa ES; Ricomini-Filho AP; Rangel EC; da Cruz NC; Sukotjo C; Mathew MT; Landers R; Consani RL; Mesquita MF; BarĂ£o VA
    Biointerphases; 2016 Mar; 11(1):011013. PubMed ID: 26984234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally gradient bonelike hydroxyapatite coating on a titanium metal substrate created by a discharging method in HBSS without organic molecules.
    Shibata Y; Takashima H; Yamamoto H; Miyazaki T
    Int J Oral Maxillofac Implants; 2004; 19(2):177-83. PubMed ID: 15101587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological surface modification of titanium surfaces using glow discharge plasma.
    Huang HM; Hsieh SC; Teng NC; Feng SW; Ou KL; Chang WJ
    Med Biol Eng Comput; 2011 Jun; 49(6):701-6. PubMed ID: 21286829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and protein-adsorption behavior of deposited organic thin film onto titanium by plasma polymerization with hexamethyldisiloxane.
    Hayakawa T; Yoshinari M; Nemoto K
    Biomaterials; 2004 Jan; 25(1):119-27. PubMed ID: 14580915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance scaffolds on titanium surfaces: osteoblast differentiation and mineralization promoted by a globular fibrinogen layer through cell-autonomous BMP signaling.
    Horasawa N; Yamashita T; Uehara S; Udagawa N
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():86-96. PubMed ID: 25491963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco's phosphate-buffered saline solution containing CaCl(2) with and without fibronectin.
    Chen C; Lee IS; Zhang SM; Yang HC
    Acta Biomater; 2010 Jun; 6(6):2274-81. PubMed ID: 19962459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone.
    Sul YT; Johansson CB; Albrektsson T
    Int J Oral Maxillofac Implants; 2002; 17(5):625-34. PubMed ID: 12381062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical surface modifications to titanium implants using the tresyl chlorideactivated method.
    Hayakawa T
    Dent Mater J; 2015; 34(6):725-39. PubMed ID: 26632221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extracellular matrix constituents on the attachment of human oral epithelial cells at the titanium surface.
    Park JC; Kim HM; Ko J
    Int J Oral Maxillofac Implants; 1998; 13(6):826-36. PubMed ID: 9857594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis.
    Morra M; Cassinelli C; Bruzzone G; Carpi A; Di Santi G; Giardino R; Fini M
    Int J Oral Maxillofac Implants; 2003; 18(1):40-5. PubMed ID: 12608667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.