These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 15972805)

  • 1. Eutrophication of aquatic ecosystems: bistability and soil phosphorus.
    Carpenter SR
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10002-5. PubMed ID: 15972805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eutrophication of freshwater and coastal marine ecosystems: a global problem.
    Smith VH
    Environ Sci Pollut Res Int; 2003; 10(2):126-39. PubMed ID: 12729046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum.
    Paerl H
    Adv Exp Med Biol; 2008; 619():217-37. PubMed ID: 18461771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective.
    Yan X; Xu X; Wang M; Wang G; Wu S; Li Z; Sun H; Shi A; Yang Y
    Water Res; 2017 Nov; 125():449-457. PubMed ID: 28898702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic phosphorus budget for lake-watershed ecosystems.
    Liu Y; Guo HC; Wang LJ; Dai YL; Zhang XM; Li ZH; He B
    J Environ Sci (China); 2006; 18(3):596-603. PubMed ID: 17294664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy.
    Paerl HW; Xu H; McCarthy MJ; Zhu G; Qin B; Li Y; Gardner WS
    Water Res; 2011 Feb; 45(5):1973-83. PubMed ID: 20934736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of nitrogen limitation in the restoration of Llangorse Lake, Wales, UK.
    May L; Spears BM; Dudley BJ; Hatton-Ellis TW
    J Environ Monit; 2010 Jan; 12(1):338-46. PubMed ID: 20082030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyanobacteria blooms: effects on aquatic ecosystems.
    Havens KE
    Adv Exp Med Biol; 2008; 619():733-47. PubMed ID: 18461790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus removal by aquatic vegetation in shallow eutrophic lakes: a laboratory study.
    Wu D; Shen C; Cheng Y; Ding J; Li W
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16166-16177. PubMed ID: 36178654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes.
    Pan G; Dai L; Li L; He L; Li H; Bi L; Gulati RD
    Environ Sci Technol; 2012 May; 46(9):5077-84. PubMed ID: 22486655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China.
    Ma J; Qin B; Wu P; Zhou J; Niu C; Deng J; Niu H
    J Environ Sci (China); 2015 Jan; 27():80-6. PubMed ID: 25597665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal phosphorus recycling promotes rich and complex dynamics in an algae-phosphorus model: Implications for eutrophication management.
    Tay CJ; Mohd MH; Teh SY; Koh HL
    J Theor Biol; 2022 Jan; 532():110913. PubMed ID: 34562459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the response of eutrophication control measures in a Swedish lake.
    Pers BC
    Ambio; 2005 Nov; 34(7):552-8. PubMed ID: 16435745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing Phosphorus to Curb Lake Eutrophication is a Success.
    Schindler DW; Carpenter SR; Chapra SC; Hecky RE; Orihel DM
    Environ Sci Technol; 2016 Sep; 50(17):8923-9. PubMed ID: 27494041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment.
    Schindler DW; Hecky RE; Findlay DL; Stainton MP; Parker BR; Paterson MJ; Beaty KG; Lyng M; Kasian SE
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11254-8. PubMed ID: 18667696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Macrophytes from some high Andean lakes of Ecuador and their low potential as bioindicators of eutrophication].
    Kiersch B; Mühleck R; Gunkel G
    Rev Biol Trop; 2004 Dec; 52(4):829-37. PubMed ID: 17354391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective.
    Reynolds CS; Davies PS
    Biol Rev Camb Philos Soc; 2001 Feb; 76(1):27-64. PubMed ID: 11325053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of eutrophic freshwater by managing internal nutrient loads. A review.
    Zamparas M; Zacharias I
    Sci Total Environ; 2014 Oct; 496():551-562. PubMed ID: 25108796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters.
    Lewis WM; Wurtsbaugh WA; Paerl HW
    Environ Sci Technol; 2011 Dec; 45(24):10300-5. PubMed ID: 22070635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outsized nutrient contributions from small tributaries to a Great Lake.
    Mooney RJ; Stanley EH; Rosenthal WC; Esselman PC; Kendall AD; McIntyre PB
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28175-28182. PubMed ID: 33106397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.