BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15974)

  • 1. Formation and dissimilation of oxalacetate and pyruvate Pseudomonas citronellolis grown on noncarbohydrate substrates.
    O'Brien RW; Taylor BL
    J Bacteriol; 1977 Apr; 130(1):131-5. PubMed ID: 15974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in NAD(P)+-dependent malic enzyme and malate dehydrogenase activities during fibroblast proliferation.
    McKeehan WL; McKeehan KA
    J Cell Physiol; 1982 Feb; 110(2):142-8. PubMed ID: 7068771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of nicotinamide-adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide-adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary.
    Flint AP; Denton RM
    Biochem J; 1970 Mar; 117(1):73-83. PubMed ID: 4393612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel enzymic machinery for the metabolism of oxalacetate, phosphoenolpyruvate, and pyruvate in Pseudomonas citronellolis.
    O'Brien R; Chuang DT; Taylor BL; Utter MF
    J Biol Chem; 1977 Feb; 252(4):1257-63. PubMed ID: 838716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue.
    Patel MS; Jomain-Baum M; Ballard FJ; Hanson RW
    J Lipid Res; 1971 Mar; 12(2):179-91. PubMed ID: 4396562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipogenesis in rat and guinea-pig isolated epididymal fat-cells.
    Saggerson ED
    Biochem J; 1974 May; 140(2):211-24. PubMed ID: 4156167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction reactions catalyzed by malic enzyme.
    Park SH; Harris BG; Cook PF
    Biochemistry; 1986 Jul; 25(13):3752-9. PubMed ID: 3741834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting the pathways of glucose catabolism and the tricarboxylic acid cycle in Pseudomonas natriegens.
    Cho HW; Eagon RG
    J Bacteriol; 1967 Mar; 93(3):866-73. PubMed ID: 4381634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of D- and L-lactate by Pseudomonas putida.
    O'Brien RW
    Aust J Biol Sci; 1977 Dec; 30(6):553-8. PubMed ID: 614007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission.
    Dennis DA; Chapman PJ; Dagley S
    J Bacteriol; 1973 Jan; 113(1):521-3. PubMed ID: 4143957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action.
    Sistare FD; Haynes RC
    J Biol Chem; 1985 Oct; 260(23):12748-53. PubMed ID: 4044607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate metabolism by Veillonella parvula.
    Ng SK; Hamilton IR
    J Bacteriol; 1971 Mar; 105(3):999-1005. PubMed ID: 4323300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic analysis of the pathways of glucose catabolism and gluconeogenesis in Pseudomonas citronellolis.
    O'Brien RW
    Arch Microbiol; 1975 Mar; 103(1):71-6. PubMed ID: 239656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of carboxylic acids on the stereospecific nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases of Leuconostoc mesenteroides.
    Doelle HW
    J Bacteriol; 1971 Dec; 108(3):1290-5. PubMed ID: 4333321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activities of enzymes concerned with pyruvate, oxaloacetate, citrate, acetate and acetoacetate metabolism in placental cotyledons of sheep.
    Dhand UK; Jeacock MK; Shepherd DA; Smith EM; Varnam GC
    Biochim Biophys Acta; 1970 Oct; 222(1):216-8. PubMed ID: 5474539
    [No Abstract]   [Full Text] [Related]  

  • 18. Utilization of oxalacetate by Acinetobacter calcoaceticus: evidence for coupling between malic enzyme and malic dehydrogenase.
    Dolin MI; Juni E
    J Bacteriol; 1978 Feb; 133(2):786-93. PubMed ID: 627536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of pigeon liver malic enzyme. Formation of L-lactate from L-malate, and effects of modification of protein thiol groups on malic enzyme, oxalacetate, and pyruvate reductase activities.
    Hsu RY
    J Biol Chem; 1970 Dec; 245(24):6675-82. PubMed ID: 4394858
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of fatty acid synthesis in adipose tissue.
    Ball EG
    Adv Enzyme Regul; 1966; 4():3-18. PubMed ID: 4383522
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.