These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 15974671)
1. Accurate ab initio predictions of ionization energies of hydrocarbon radicals: CH2, CH3, C2H, C2H3, C2H5, C3H3, and C3H5. Lau KC; Ng CY J Chem Phys; 2005 Jun; 122(22):224310. PubMed ID: 15974671 [TBL] [Abstract][Full Text] [Related]
2. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl radicals. Lau KC; Ng CY J Chem Phys; 2006 Jan; 124(4):044323. PubMed ID: 16460178 [TBL] [Abstract][Full Text] [Related]
3. Theoretical prediction of the ionization energies of the C4H7 radicals: 1-methylallyl, 2-methylallyl, cyclopropylmethyl, and cyclobutyl radicals. Lau KC; Zheng W; Wong NB; Li WK J Chem Phys; 2007 Oct; 127(15):154302. PubMed ID: 17949144 [TBL] [Abstract][Full Text] [Related]
4. High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, furan, pyrrole, 1,3-cyclopentadiene, and borole, C4H4X/C4H4X+ (X = S, O, NH, CH2, and BH). Lo PK; Lau KC J Phys Chem A; 2011 Feb; 115(5):932-9. PubMed ID: 21210670 [TBL] [Abstract][Full Text] [Related]
5. Benchmarking state-of-the-art ab initio thermochemical predictions with accurate pulsed-field ionization photoion-photoelectron measurements. Lau KC; Ng CY Acc Chem Res; 2006 Nov; 39(11):823-9. PubMed ID: 17115722 [TBL] [Abstract][Full Text] [Related]
6. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formations of iron carbide (FeC) and its cation (FeC+). Lau KC; Chang YC; Lam CS; Ng CY J Phys Chem A; 2009 Dec; 113(52):14321-8. PubMed ID: 19775110 [TBL] [Abstract][Full Text] [Related]
7. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+). Lau KC; Chang YC; Shi X; Ng CY J Chem Phys; 2010 Sep; 133(11):114304. PubMed ID: 20866136 [TBL] [Abstract][Full Text] [Related]
8. Combined vacuum ultraviolet laser and synchrotron pulsed field ionization study of CH2BrCl. Li J; Yang J; Mo Y; Lau KC; Qian XM; Song Y; Liu J; Ng CY J Chem Phys; 2007 May; 126(18):184304. PubMed ID: 17508800 [TBL] [Abstract][Full Text] [Related]
9. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of cobalt carbide (CoC) and its cation (CoC+). Lau KC; Pan Y; Lam CS; Huang H; Chang YC; Luo Z; Shi X; Ng CY J Chem Phys; 2013 Mar; 138(9):094302. PubMed ID: 23485289 [TBL] [Abstract][Full Text] [Related]
10. Vacuum ultraviolet laser pulsed field ionization-photoelectron study of cis-dichloroethene. Lau KC; Woo HK; Wang P; Xing X; Ng CY J Chem Phys; 2006 Jun; 124(22):224311. PubMed ID: 16784278 [TBL] [Abstract][Full Text] [Related]
11. High-level ab initio predictions for the ionization energy, electron affinity, and heats of formation of cyclopentadienyl radical, cation, and anion, C5H5/C5H5+/C5H5-. Lo PK; Lau KC J Phys Chem A; 2014 Apr; 118(13):2498-507. PubMed ID: 24621131 [TBL] [Abstract][Full Text] [Related]
12. High-Level ab Initio Predictions for the Ionization Energies, Bond Dissociation Energies, and Heats of Formation of Titanium Oxides and Their Cations (TiO Pan Y; Luo Z; Chang YC; Lau KC; Ng CY J Phys Chem A; 2017 Jan; 121(3):669-679. PubMed ID: 28075604 [TBL] [Abstract][Full Text] [Related]
13. A vacuum-ultraviolet laser pulsed field ionization-photoelectron study of sulfur monoxide (SO) and its cation (SO+). Lam CS; Wang H; Xu Y; Lau KC; Ng CY J Chem Phys; 2011 Apr; 134(14):144304. PubMed ID: 21495752 [TBL] [Abstract][Full Text] [Related]
14. Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces. Dawes R; Wagner AF; Thompson DL J Phys Chem A; 2009 Apr; 113(16):4709-21. PubMed ID: 19371124 [TBL] [Abstract][Full Text] [Related]
15. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
16. Reliable predictions of the thermochemistry of boron-nitrogen hydrogen storage compounds: BxNxHy, x = 2, 3. Matus MH; Anderson KD; Camaioni DM; Autrey ST; Dixon DA J Phys Chem A; 2007 May; 111(20):4411-21. PubMed ID: 17444621 [TBL] [Abstract][Full Text] [Related]
17. Potential-energy surface for the electronic ground state of NH3 up to 20,000 cm-1 above equilibrium. Yurchenko SN; Zheng J; Lin H; Jensen P; Thiel W J Chem Phys; 2005 Oct; 123(13):134308. PubMed ID: 16223289 [TBL] [Abstract][Full Text] [Related]
18. A high-resolution pulsed field ionization-photoelectron-photoion coincidence study of vinyl bromide. Qian XM; Lau KC; Ng CY J Chem Phys; 2004 Jun; 120(23):11031-41. PubMed ID: 15268133 [TBL] [Abstract][Full Text] [Related]
19. Ab initio calculations on the X (2)B1 and A (2)A1 states of AsH2, and Franck-Condon simulation, including anharmonicity, of the A(0,0,0)-X single vibronic level emission spectrum of AsH2. Lee EP; Mok DK; Chau FT; Dyke JM J Chem Phys; 2010 Jun; 132(23):234309. PubMed ID: 20572707 [TBL] [Abstract][Full Text] [Related]
20. Vacuum ultraviolet laser pulsed field ionization-photoelectron study of allyl radical CH2CHCH2. Xing X; Reed B; Lau KC; Ng CY; Zhang X; Ellison GB J Chem Phys; 2007 May; 126(17):171101. PubMed ID: 17492849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]