These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1597476)

  • 21. The interaction between transferrin and rabbit reticulocyte ghosts.
    Morgan EH; Baker E
    Biochim Biophys Acta; 1974 Sep; 363(2):240-8. PubMed ID: 4421394
    [No Abstract]   [Full Text] [Related]  

  • 22. Iron transport into erythroid cells by the Na+/Mg2+ antiport.
    Stonell LM; Savigni DL; Morgan EH
    Biochim Biophys Acta; 1996 Jun; 1282(1):163-70. PubMed ID: 8679654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of membrane surface potential and other factors in the uptake of non-transferrin-bound iron by reticulocytes.
    Quail EA; Morgan EH
    J Cell Physiol; 1994 May; 159(2):238-44. PubMed ID: 8163564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Receptor-independent uptake of transferrin-bound iron by reticulocytes.
    Hodgson LL; Quail EA; Morgan EH
    Arch Biochem Biophys; 1994 Jan; 308(1):318-26. PubMed ID: 7508710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in the uptake of transferrin-free and transferrin-bound iron during reticulocyte maturation in vivo and in vitro.
    Qian ZM; Morgan EH
    Biochim Biophys Acta; 1992 Apr; 1135(1):35-43. PubMed ID: 1591271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of plasma membrane phospholipids in the uptake and release of transferrin and its iron by reticulocytes.
    Hemmaplardh D; Morgan RG; Morgan EH
    J Membr Biol; 1977 May; 33(3-4):195-212. PubMed ID: 864688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron transport mechanisms in reticulocytes and mature erythrocytes.
    Hodgson LL; Quail EA; Morgan EH
    J Cell Physiol; 1995 Feb; 162(2):181-90. PubMed ID: 7822429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative aspects of transferrin-reticulocyte interactions: membrane receptors and iron uptake.
    van Bockxmeer FM; Morgan EH
    Comp Biochem Physiol A Comp Physiol; 1982; 71(2):211-8. PubMed ID: 6121647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The human erythrocyte ghost: a new experimental model for studying adenosine transport.
    Fernandez-Rivera-Rio L; Gonzalez-Garcia MR
    Arch Biochem Biophys; 1985 Jul; 240(1):246-56. PubMed ID: 4015103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chloride transport in human erythrocytes and ghosts: a quantitative comparison.
    Funder J; Wieth JO
    J Physiol; 1976 Nov; 262(3):679-98. PubMed ID: 13204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of osmolar and ionic composition of the extracellular fluid on transferrin endocytosis and exocytosis and iron uptake by reticulocytes.
    Bowen BJ; Morgan EH
    J Cell Physiol; 1988 Jan; 134(1):1-12. PubMed ID: 3335579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracellular kinetics of iron in reticulocytes: evidence for endosome involvement in iron targeting to mitochondria.
    Zhang AS; Sheftel AD; Ponka P
    Blood; 2005 Jan; 105(1):368-75. PubMed ID: 15331447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transferrin binding and iron transport in iron-deficient and iron-replete rat reticulocytes.
    Black C; Glass J; Nunez MT; Robinson SH
    J Lab Clin Med; 1979 Apr; 93(4):645-51. PubMed ID: 429862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ca-induced K transport in human red blood cell ghosts containing arsenazo III. Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na-K pump.
    Yingst DR; Hoffman JF
    J Gen Physiol; 1984 Jan; 83(1):19-45. PubMed ID: 6319543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition by calcium ions of adenosine cyclic monophosphate formation in sealed pigeon erythrocyte 'ghosts'. A study using the photoprotein obelin.
    Campbell AK; Dormer RL
    Biochem J; 1978 Oct; 176(1):53-66. PubMed ID: 215135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amines as inhibitors of iron transport in rabbit reticulocytes.
    Glass J; Nunez MT
    J Biol Chem; 1986 Jun; 261(18):8298-302. PubMed ID: 3013846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interaction of resealed reticulocyte ghosts with Fe3+-transferrin-CO3(2-).
    Loh TT; Shupe K; Bates GW
    Cell Biol Int Rep; 1985 Mar; 9(3):229-35. PubMed ID: 2985288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The H(+)-ATPase from reticulocyte endosomes reconstituted into liposomes acts as an iron transporter.
    Li CY; Watkins JA; Glass J
    J Biol Chem; 1994 Apr; 269(14):10242-6. PubMed ID: 8144605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP dependent uptake of zinc by human erythrocyte ghosts.
    Schmetterer G
    Z Naturforsch C Biosci; 1978; 33(3-4):210-5. PubMed ID: 149457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.