These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15974780)

  • 1. Multifractal analysis of dynamic potential surface of ion-conducting materials.
    Habasaki J; Ngai KL
    J Chem Phys; 2005 Jun; 122(21):214725. PubMed ID: 15974780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics studies of ionically conducting glasses and ionic liquids: wave number dependence of intermediate scattering function.
    Habasaki J; Ngai KL
    J Chem Phys; 2010 Sep; 133(12):124505. PubMed ID: 20886948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mixed alkali effect in ionically conducting glasses revisited: a study by molecular dynamics simulation.
    Habasaki J; Ngai KL
    Phys Chem Chem Phys; 2007 Sep; 9(33):4673-89. PubMed ID: 17700869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifractality of instantaneous normal modes at mobility edges.
    Huang BJ; Wu TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051133. PubMed ID: 21230463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short- and medium-range structure of multicomponent bioactive glasses and melts: An assessment of the performances of shell-model and rigid-ion potentials.
    Tilocca A
    J Chem Phys; 2008 Aug; 129(8):084504. PubMed ID: 19044832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity.
    Barreira L; Pesin Y; Schmeling J
    Chaos; 1997 Mar; 7(1):27-38. PubMed ID: 12779635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous dynamics of ionic liquids from molecular dynamics simulations.
    Habasaki J; Ngai KL
    J Chem Phys; 2008 Nov; 129(19):194501. PubMed ID: 19026060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence in support of levitation effect as the reason for size dependence of ionic conductivity in water: a molecular dynamics simulation.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2006 Jun; 110(24):12179-90. PubMed ID: 16800534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinements in the characterization of the heterogeneous dynamics of Li ions in lithium metasilicate.
    Habasaki J; Ngai KL
    J Chem Phys; 2008 Jul; 129(3):034503. PubMed ID: 18647027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and dynamic properties of concentrated alkali halide solutions: a molecular dynamics simulation study.
    Du H; Rasaiah JC; Miller JD
    J Phys Chem B; 2007 Jan; 111(1):209-17. PubMed ID: 17201445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New mechanistic insight into electronically excited CO-NiO(100): a quantum dynamical analysis.
    Mehdaoui I; Klüner T
    Phys Chem Chem Phys; 2008 Aug; 10(31):4559-64. PubMed ID: 18665305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of caged ions in glassy ionic conductors.
    Habasaki J; Ngai KL; Hiwatari Y
    J Chem Phys; 2004 May; 120(17):8195-200. PubMed ID: 15267739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of exchange-correlation functionals in the potential energy surface and dynamics of N(2) dissociation on W surfaces.
    Bocan GA; Díez Muiño R; Alducin M; Busnengo HF; Salin A
    J Chem Phys; 2008 Apr; 128(15):154704. PubMed ID: 18433255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. II. Dynamical properties.
    Costa LT; Ribeiro MC
    J Chem Phys; 2007 Oct; 127(16):164901. PubMed ID: 17979388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of multifractal dimensions of complex networks by means of the sandbox algorithm.
    Liu JL; Yu ZG; Anh V
    Chaos; 2015 Feb; 25(2):023103. PubMed ID: 25725639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiscale approach to ion diffusion in clays: building a two-state diffusion-reaction scheme from microscopic dynamics.
    Rotenberg B; Marry V; Dufrêche JF; Giffaut E; Turq P
    J Colloid Interface Sci; 2007 May; 309(2):289-95. PubMed ID: 17349652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion dynamics of the Li+ ion on a model surface of amorphous carbon: a direct molecular orbital dynamics study.
    Tachikawa H; Shimizu A
    J Phys Chem B; 2005 Jul; 109(27):13255-62. PubMed ID: 16852653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy computing via integration over fractal measures.
    Słomczynski W; Kwapien J; Zyczkowski K
    Chaos; 2000 Mar; 10(1):180-188. PubMed ID: 12779373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes.
    Adams S; Rao RP
    Phys Chem Chem Phys; 2009 May; 11(17):3210-6. PubMed ID: 19370216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of lithium chloride on the palisade layer of the Triton-X-100 micelle: two sites for lithium ions as revealed by solvation and rotational dynamics studies.
    Kumbhakar M; Goel T; Mukherjee T; Pal H
    J Phys Chem B; 2005 Oct; 109(39):18528-34. PubMed ID: 16853386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.