BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15974896)

  • 41. Neurological cholinesterases in the normal brain and in Alzheimer's disease: relationship to plaques, tangles, and patterns of selective vulnerability.
    Wright CI; Geula C; Mesulam MM
    Ann Neurol; 1993 Sep; 34(3):373-84. PubMed ID: 8363355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and Preliminary Evaluation of Phenyl 4-123I-Iodophenylcarbamate for Visualization of Cholinesterases Associated with Alzheimer Disease Pathology.
    Macdonald IR; Reid GA; Pottie IR; Martin E; Darvesh S
    J Nucl Med; 2016 Feb; 57(2):297-302. PubMed ID: 26541777
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acetylcholinesterase and its inhibition in Alzheimer disease.
    Lane RM; Kivipelto M; Greig NH
    Clin Neuropharmacol; 2004; 27(3):141-9. PubMed ID: 15190239
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of diisopropylfluorophosphate on brain acetylcholinesterase, butyrylcholinesterase, and neurotoxic esterase in rats.
    Lim DK; Hoskins B; Ho IK
    Biomed Environ Sci; 1989 Sep; 2(3):295-304. PubMed ID: 2610946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mice heterozygous for AChE are more sensitive to AChE inhibitors but do not respond to BuChE inhibition.
    Mohr F; Zimmermann M; Klein J
    Neuropharmacology; 2013 Apr; 67():37-45. PubMed ID: 23147415
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Species- and concentration-dependent differences of acetyl- and butyrylcholinesterase sensitivity to physostigmine and neostigmine.
    Bitzinger DI; Gruber M; Tümmler S; Michels B; Bundscherer A; Hopf S; Trabold B; Graf BM; Zausig YA
    Neuropharmacology; 2016 Oct; 109():1-6. PubMed ID: 26772968
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Interaction Between Two Metabolites of Polygala tenuifolia and Cholinesterases.
    Gao C; Du H
    Protein Pept Lett; 2022; 29(12):1051-1060. PubMed ID: 36028966
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors.
    Daoud I; Melkemi N; Salah T; Ghalem S
    Comput Biol Chem; 2018 Jun; 74():304-326. PubMed ID: 29747032
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.
    Darvesh S; Arora RC; Martin E; Magee D; Hopkins DA; Armour JA
    Exp Neurol; 2004 Aug; 188(2):461-70. PubMed ID: 15246845
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Current concepts on selected plant secondary metabolites with promising inhibitory effects against enzymes linked to Alzheimer's disease.
    Orhan IE
    Curr Med Chem; 2012; 19(14):2252-61. PubMed ID: 22414107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and Biological Evaluation of New Cholinesterase Inhibitors for Alzheimer's Disease.
    Hussein W; Sağlık BN; Levent S; Korkut B; Ilgın S; Özkay Y; Kaplancıklı ZA
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30110946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cholinesterases in cardiac ganglia and modulation of canine intrinsic cardiac neuronal activity.
    Darvesh S; MacDonald SE; Losier AM; Martin E; Hopkins DA; Armour JA
    J Auton Nerv Syst; 1998 Jul; 71(2-3):75-84. PubMed ID: 9760044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity.
    Markowicz-Piasecka M; Sikora J; Mateusiak Ł; Mikiciuk-Olasik E; Huttunen KM
    Oxid Med Cell Longev; 2017; 2017():7303096. PubMed ID: 28770024
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A review on cholinesterase inhibitors for Alzheimer's disease.
    Anand P; Singh B
    Arch Pharm Res; 2013 Apr; 36(4):375-99. PubMed ID: 23435942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer's disease.
    Bartorelli L; Giraldi C; Saccardo M; Cammarata S; Bottini G; Fasanaro AM; Trequattrini A;
    Curr Med Res Opin; 2005 Nov; 21(11):1809-18. PubMed ID: 16307702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protease inhibitors and indolamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer's disease.
    Wright CI; Geula C; Mesulam MM
    Ann N Y Acad Sci; 1993 Sep; 695():65-8. PubMed ID: 8239315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine.
    Samadi A; de los Ríos C; Bolea I; Chioua M; Iriepa I; Moraleda I; Bartolini M; Andrisano V; Gálvez E; Valderas C; Unzeta M; Marco-Contelles J
    Eur J Med Chem; 2012 Jun; 52():251-62. PubMed ID: 22503231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperature effects on cholinesterases from rat brain capillaries.
    Catalan RE; Hernandez F
    Biosci Rep; 1986 Jun; 6(6):573-7. PubMed ID: 3768496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of salivary acetylcholinesterase and pseudocholinesterase in patients with Alzheimer's disease: A case-control study.
    Ahmadi-Motamayel F; Goodarzi MT; Tarazi S; Vahabian M
    Spec Care Dentist; 2019 Jan; 39(1):39-44. PubMed ID: 30536408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uleine Disrupts Key Enzymatic and Non-Enzymatic Biomarkers that Leads to Alzheimer's Disease.
    Seidl C; de Moraes Santos CA; De Simone A; Bartolini M; Weffort-Santos AM; Andrisano V
    Curr Alzheimer Res; 2017; 14(3):317-326. PubMed ID: 27784218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.