BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 15975474)

  • 1. Repeatability of autorefraction and axial length measurements after laser in situ keratomileusis.
    Bailey MD; Twa MD; Mitchell GL; Dhaliwal DK; Jones LA; McMahon TT
    J Cataract Refract Surg; 2005 May; 31(5):1025-34. PubMed ID: 15975474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autorefraction as an outcome measure of laser in situ keratomileusis.
    Pesudovs K
    J Cataract Refract Surg; 2004 Sep; 30(9):1921-8. PubMed ID: 15342056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The repeatability of measurement of the ocular components.
    Zadnik K; Mutti DO; Adams AJ
    Invest Ophthalmol Vis Sci; 1992 Jun; 33(7):2325-33. PubMed ID: 1607244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinoscopy/autorefraction: which is the best starting point for a noncycloplegic refraction?
    Jorge J; Queirós A; Almeida JB; Parafita MA
    Optom Vis Sci; 2005 Jan; 82(1):64-8. PubMed ID: 15630406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of autorefraction and subjective refraction with and without cycloplegia in primary school children.
    Choong YF; Chen AH; Goh PP
    Am J Ophthalmol; 2006 Jul; 142(1):68-74. PubMed ID: 16815252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of noncycloplegic refraction in primary school children in southern Thailand.
    Funarunart P; Tengtrisorn S; Sangsupawanich P; Siangyai P
    J Med Assoc Thai; 2009 Jun; 92(6):806-11. PubMed ID: 19530586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective and subjective preoperative refraction techniques for wavefront-optimized and wavefront-guided laser in situ keratomileusis.
    Perez-Straziota CE; Randleman JB; Stulting RD
    J Cataract Refract Surg; 2009 Feb; 35(2):256-9. PubMed ID: 19185239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of aberrometry-based relative peripheral refraction measurements.
    Berntsen DA; Mutti DO; Zadnik K
    Ophthalmic Physiol Opt; 2008 Jan; 28(1):83-90. PubMed ID: 18201339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The precision of wavefront refraction compared to subjective refraction and autorefraction.
    Pesudovs K; Parker KE; Cheng H; Applegate RA
    Optom Vis Sci; 2007 May; 84(5):387-92. PubMed ID: 17502821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser in situ keratomileusis versus lens-based surgery for correcting residual refractive error after cataract surgery.
    Jin GJ; Merkley KH; Crandall AS; Jones YJ
    J Cataract Refract Surg; 2008 Apr; 34(4):562-9. PubMed ID: 18361976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults.
    Mallen EA; Wolffsohn JS; Gilmartin B; Tsujimura S
    Ophthalmic Physiol Opt; 2001 Mar; 21(2):101-7. PubMed ID: 11261343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative optical refractive biometry for intraocular lens power estimation without axial length and keratometry measurements.
    Ianchulev T; Salz J; Hoffer K; Albini T; Hsu H; Labree L
    J Cataract Refract Surg; 2005 Aug; 31(8):1530-6. PubMed ID: 16129287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic measurement errors involved in over-refraction using an autorefractor (Grand-Seiko WV-500): is measurement of accommodative lag through spectacle lenses valid?
    Kimura S; Hasebe S; Ohtsuki H
    Ophthalmic Physiol Opt; 2007 May; 27(3):281-6. PubMed ID: 17470241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic accuracy and variability of autorefraction by the Tracey Visual Function Analyzer and the Shin-Nippon NVision-K 5001 in relation to subjective refraction.
    Cleary G; Spalton DJ; Patel PM; Lin PF; Marshall J
    Ophthalmic Physiol Opt; 2009 Mar; 29(2):173-81. PubMed ID: 19236587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a clinical aberrometer for lower-order accuracy and repeatability, higher-order repeatability, and instrument myopia.
    Salmon TO; van de Pol C
    Optometry; 2005 Aug; 76(8):461-72. PubMed ID: 16150413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeatability and reproducibility of posterior corneal curvature measurements by combined scanning-slit and placido-disc topography after LASIK.
    Maldonado MJ; Nieto JC; Díez-Cuenca M; Piñero DP
    Ophthalmology; 2006 Nov; 113(11):1918-26. PubMed ID: 16935339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraocular lens power calculation after myopic laser in situ keratomileusis: Estimating the corneal refractive power.
    Awwad ST; Manasseh C; Bowman RW; Cavanagh HD; Verity S; Mootha V; McCulley JP
    J Cataract Refract Surg; 2008 Jul; 34(7):1070-6. PubMed ID: 18571071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of laser-assisted subepithelial keratectomy to treat residual refractive errors after laser in situ keratomileusis.
    Cagil N; Aydin B; Ozturk S; Hasiripi H
    J Cataract Refract Surg; 2007 Apr; 33(4):642-7. PubMed ID: 17397737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeatability and Validity of Peripheral Refraction with Two Different Autorefractors.
    Morrison AM; Mutti DO
    Optom Vis Sci; 2020 Jun; 97(6):429-439. PubMed ID: 32511165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photorefractive keratectomy and laser in situ keratomileusis in refractive accommodative esotropia.
    Sabetti L; Spadea L; D'Alessandri L; Balestrazzi E
    J Cataract Refract Surg; 2005 Oct; 31(10):1899-903. PubMed ID: 16338558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.