These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15975557)

  • 1. Probing the mechanism of rubredoxin thermal unfolding in the absence of salt bridges by temperature jump experiments.
    Henriques BJ; Saraiva LM; Gomes CM
    Biochem Biophys Res Commun; 2005 Aug; 333(3):839-44. PubMed ID: 15975557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unfolding mechanism of rubredoxin from Pyrococcus furiosus.
    Cavagnero S; Zhou ZH; Adams MW; Chan SI
    Biochemistry; 1998 Mar; 37(10):3377-85. PubMed ID: 9521658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation.
    LeMaster DM; Tang J; Hernández G
    Proteins; 2004 Oct; 57(1):118-27. PubMed ID: 15326598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation.
    Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q
    J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined spectroscopic and calorimetric characterisation of rubredoxin reversible thermal transition.
    Henriques BJ; Saraiva LM; Gomes CM
    J Biol Inorg Chem; 2006 Jan; 11(1):73-81. PubMed ID: 16331403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of the multi-turn segment in the reversible thermal stability of hyperthermophile rubredoxin: NMR thermal chemical exchange analysis of sequence hybrids.
    LeMaster DM; Tang J; Paredes DI; Hernández G
    Biophys Chem; 2005 Jun; 116(1):57-65. PubMed ID: 15911082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids.
    LeMaster DM; Tang J; Paredes DI; Hernández G
    Proteins; 2005 Nov; 61(3):608-16. PubMed ID: 16130131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic role of electrostatic interactions in the unfolding of hyperthermophilic and mesophilic rubredoxins.
    Cavagnero S; Debe DA; Zhou ZH; Adams MW; Chan SI
    Biochemistry; 1998 Mar; 37(10):3369-76. PubMed ID: 9521657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion interactions govern the strong thermal stability of a protein.
    Vondrásek J; Kubar T; Jenney FE; Adams MW; Kozísek M; Cerný J; Sklenár V; Hobza P
    Chemistry; 2007; 13(32):9022-7. PubMed ID: 17696186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostability in rubredoxin and its relationship to mechanical rigidity.
    Rader AJ
    Phys Biol; 2009 Dec; 7():16002. PubMed ID: 20009190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neutron crystallographic analysis of a rubredoxin mutant at 1.6 A resolution.
    Chatake T; Kurihara K; Tanaka I; Tsyba I; Bau R; Jenney FE; Adams MW; Niimura N
    Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1364-73. PubMed ID: 15272158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal stability of Clostridium pasteurianum rubredoxin: deconvoluting the contributions of the metal site and the protein.
    Bonomi F; Fessas D; Iametti S; Kurtz DM; Mazzini S
    Protein Sci; 2000 Dec; 9(12):2413-26. PubMed ID: 11206063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 A resolution.
    Chen CJ; Lin YH; Huang YC; Liu MY
    Biochem Biophys Res Commun; 2006 Oct; 349(1):79-90. PubMed ID: 16930541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of the molten globule state of ferredoxin: structural characterization and implications on protein folding and iron-sulfur center assembly.
    Leal SS; Gomes CM
    Proteins; 2007 Aug; 68(3):606-16. PubMed ID: 17510960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rubredoxin mutant A51C unfolding dynamics: a Förster Resonance Energy Transfer study.
    Santos A; Duarte AG; Fedorov A; Martinho JM; Moura I
    Biophys Chem; 2010 May; 148(1-3):131-7. PubMed ID: 20381231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additivity of differential conformational dynamics in hyperthermophile/mesophile rubredoxin chimeras as monitored by hydrogen exchange.
    LeMaster DM; Hernández G
    Chembiochem; 2006 Dec; 7(12):1886-9. PubMed ID: 17068837
    [No Abstract]   [Full Text] [Related]  

  • 18. Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6281-300. PubMed ID: 18936853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin.
    Lazaridis T; Lee I; Karplus M
    Protein Sci; 1997 Dec; 6(12):2589-605. PubMed ID: 9416608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additivity in both thermodynamic stability and thermal transition temperature for rubredoxin chimeras via hybrid native partitioning.
    LeMaster DM; Hernández G
    Structure; 2005 Aug; 13(8):1153-63. PubMed ID: 16084387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.