These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
445 related articles for article (PubMed ID: 15975568)
21. Effect of supercooling and cell volume on intracellular ice formation. Prickett RC; Marquez-Curtis LA; Elliott JA; McGann LE Cryobiology; 2015 Apr; 70(2):156-63. PubMed ID: 25707695 [TBL] [Abstract][Full Text] [Related]
22. Diffusion controlled ice growth with soft impingement inside biological cells during freezing. Chen C; Li W Cryo Letters; 2008; 29(5):371-81. PubMed ID: 18946551 [TBL] [Abstract][Full Text] [Related]
23. Biotransport phenomena in freezing mammalian oocytes. Yang G; Veres M; Szalai G; Zhang A; Xu LX; He X Ann Biomed Eng; 2011 Jan; 39(1):580-91. PubMed ID: 20848315 [TBL] [Abstract][Full Text] [Related]
24. Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide. Rall WF; Mazur P; McGrath JJ Biophys J; 1983 Jan; 41(1):1-12. PubMed ID: 6824748 [TBL] [Abstract][Full Text] [Related]
25. The effect of extracellular ice and cryoprotective agents on the water permeability parameters of human sperm plasma membrane during freezing. Devireddy RV; Swanlund DJ; Roberts KP; Pryor JL; Bischof JC Hum Reprod; 2000 May; 15(5):1125-35. PubMed ID: 10783365 [TBL] [Abstract][Full Text] [Related]
26. Is intracellular ice formation the cause of death of mouse sperm frozen at high cooling rates? Mazur P; Koshimoto C Biol Reprod; 2002 May; 66(5):1485-90. PubMed ID: 11967214 [TBL] [Abstract][Full Text] [Related]
27. Kinetics and activation energy of recrystallization of intracellular ice in mouse oocytes subjected to interrupted rapid cooling. Seki S; Mazur P Cryobiology; 2008 Jun; 56(3):171-80. PubMed ID: 18359013 [TBL] [Abstract][Full Text] [Related]
28. Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique. Wharton DA; Downes MF; Goodall G; Marshall CJ Cryobiology; 2005 Feb; 50(1):21-8. PubMed ID: 15710366 [TBL] [Abstract][Full Text] [Related]
29. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates. Li J; Zhang LL; Liu QH; Xu XZ; Xiao ZZ; Ma DY; Xu SH; Xue QZ Cryobiology; 2009 Aug; 59(1):48-53. PubMed ID: 19375414 [TBL] [Abstract][Full Text] [Related]
30. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs. Yang CY; Yeh YH; Lee PT; Lin TT Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025 [TBL] [Abstract][Full Text] [Related]
31. Performance of a kinetic model for intracellular ice formation based on the extent of supercooling. Pitt RE; Chandrasekaran M; Parks JE Cryobiology; 1992 Jun; 29(3):359-73. PubMed ID: 1499321 [TBL] [Abstract][Full Text] [Related]
32. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Seki S; Mazur P Cryobiology; 2009 Aug; 59(1):75-82. PubMed ID: 19427303 [TBL] [Abstract][Full Text] [Related]
34. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model. Liu J; Mullen S; Meng Q; Critser J; Dinnyes A Cryobiology; 2009 Oct; 59(2):127-34. PubMed ID: 19527701 [TBL] [Abstract][Full Text] [Related]
37. Polyvinylpyrrolidone (PVP) mitigates the damaging effects of intracellular ice formation in adult stem cells. Guha A; Devireddy R Ann Biomed Eng; 2010 May; 38(5):1826-35. PubMed ID: 20177781 [TBL] [Abstract][Full Text] [Related]
38. High ice nucleation temperature of zebrafish embryos: slow-freezing is not an option. Hagedorn M; Peterson A; Mazur P; Kleinhans FW Cryobiology; 2004 Oct; 49(2):181-9. PubMed ID: 15351689 [TBL] [Abstract][Full Text] [Related]