These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15975632)

  • 1. Blending foundry sands with soil: Effect on dehydrogenase activity.
    Dungan RS; Kukier U; Lee B
    Sci Total Environ; 2006 Mar; 357(1-3):221-30. PubMed ID: 15975632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries.
    Miguel RE; Ippolito JA; Leytem AB; Porta AA; Banda Noriega RB; Dungan RS
    J Environ Manage; 2012 Nov; 110():77-81. PubMed ID: 22738693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amelioration of physical strength in waste foundry green sands for reuse as a soil amendment.
    de Koff JP; Lee BD; Dungan RS
    J Environ Qual; 2008; 37(6):2332-8. PubMed ID: 18948487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Environmental toxicity of waste foundry sand].
    Zhang HF; Wang YJ; Wang JL; Huang TY; Xiong Y
    Huan Jing Ke Xue; 2013 Mar; 34(3):1174-80. PubMed ID: 23745431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of compost-, sand-, or gypsum-amended waste foundry sands on turfgrass yield and nutrient content.
    de Koff JP; Lee BD; Dungan RS; Santini JB
    J Environ Qual; 2010; 39(1):375-83. PubMed ID: 20048325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The characterization of total and leachable metals in foundry molding sands.
    Dungan RS; Dees NH
    J Environ Manage; 2009 Jan; 90(1):539-48. PubMed ID: 18194836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waste green sands as reactive media for the removal of zinc from water.
    Lee T; Park JW; Lee JH
    Chemosphere; 2004 Aug; 56(6):571-81. PubMed ID: 15212900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of biotoxicity of three types of landfilled foundry waste on the basis of dehydrogenase activity.
    Bożym M
    Environ Monit Assess; 2022 Aug; 194(10):671. PubMed ID: 35971006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.
    Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M
    Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of advanced oxidation on green sand properties via iron casting into green sand molds.
    Wang Y; Cannon FS; Voigt RC; Komarneni S; Furness JC
    Environ Sci Technol; 2006 May; 40(9):3095-101. PubMed ID: 16719117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of standardized procedures to evaluate metal leaching from waste foundry sands.
    Miguel RE; Ippolito JA; Porta AA; Banda Noriega RB; Dungan RS
    J Environ Qual; 2013; 42(2):615-20. PubMed ID: 23673854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium fractionation in semi-arid soils amended with chromium and tannery sludge.
    Barajas-Aceves M; Corona-Hernández J; Rodríguez-Vázquez R
    J Hazard Mater; 2007 Jul; 146(1-2):91-7. PubMed ID: 17222971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia.
    Sultan K
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technological behaviour and recycling potential of spent foundry sands in clay bricks.
    Alonso-Santurde R; Andrés A; Viguri JR; Raimondo M; Guarini G; Zanelli C; Dondi M
    J Environ Manage; 2011 Mar; 92(3):994-1002. PubMed ID: 21129840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure to low molecular weight isocyanates and formaldehyde in foundries using hot box core binders.
    Westberg H; Löfstedt H; Seldén A; Lilja BG; Nayström P
    Ann Occup Hyg; 2005 Nov; 49(8):719-25. PubMed ID: 16126762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis of foundry sand resins: a determination of organic products by mass spectrometry.
    Dungan RS; Reeves JB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(8):1557-67. PubMed ID: 15991723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage (Brassica chinensis).
    Liao M; Chen CL; Zeng LS; Huang CY
    Chemosphere; 2007 Jan; 66(7):1197-205. PubMed ID: 16949632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geoenvironmental behavior of foundry sand amended mixtures for highway subbases.
    Guney Y; Aydilek AH; Demirkan MM
    Waste Manag; 2006; 26(9):932-45. PubMed ID: 16111882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.