These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 15975859)

  • 1. Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA.
    Park SH; Cha H; Kang HK; Shim JH; Woo EJ; Kim JW; Park KH
    Biochim Biophys Acta; 2005 Aug; 1751(2):170-7. PubMed ID: 15975859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of hydrolysis and transglycosylation activity of Thermus maltogenic amylase by combinatorial saturation mutagenesis.
    Oh SW; Jang MU; Jeong CK; Kang HJ; Park JM; Kim TJ
    J Microbiol Biotechnol; 2008 Aug; 18(8):1401-7. PubMed ID: 18756100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the multisubstrate specificity of Thermus maltogenic amylase by truncation of the N-terminal domain and by a salt-induced shift of the monomer/dimer equilibrium.
    Kim TJ; Nguyen VD; Lee HS; Kim MJ; Cho HY; Kim YW; Moon TW; Park CS; Kim JW; Oh BH; Lee SB; Svensson B; Park KH
    Biochemistry; 2001 Nov; 40(47):14182-90. PubMed ID: 11714271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance.
    Kim YW; Choi JH; Kim JW; Park C; Kim JW; Cha H; Lee SB; Oh BH; Moon TW; Park KH
    Appl Environ Microbiol; 2003 Aug; 69(8):4866-74. PubMed ID: 12902281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity.
    Manas NH; Bakar FD; Illias RM
    J Mol Graph Model; 2016 Jun; 67():1-13. PubMed ID: 27155296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.
    Sun Y; Duan X; Wang L; Wu J
    J Biotechnol; 2016 Jan; 217():53-61. PubMed ID: 26597712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides.
    Sierks MR; Svensson B
    Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the reaction mechanism of glycosyl hydrolase family 49. Site-directed mutagenesis and substrate preference of isopullulanase.
    Akeboshi H; Tonozuka T; Furukawa T; Ichikawa K; Aoki H; Shimonishi A; Nishikawa A; Sakano Y
    Eur J Biochem; 2004 Nov; 271(22):4420-7. PubMed ID: 15560783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the catalytic properties and substrate specificity of Bacillus sp. US149 maltogenic amylase by mutagenesis of residue 46.
    Ben Mabrouk S; Ayadi-Zouari D; Ben Hlima H; Bejar S
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):947-53. PubMed ID: 23771845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the glutamate 332 residue in the transglycosylation activity of ThermusMaltogenic amylase.
    Kim TJ; Park CS; Cho HY; Cha SS; Kim JS; Lee SB; Moon TW; Kim JW; Oh BH; Park KH
    Biochemistry; 2000 Jun; 39(23):6773-80. PubMed ID: 10841756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center.
    Kuriki T; Kaneko H; Yanase M; Takata H; Shimada J; Handa S; Takada T; Umeyama H; Okada S
    J Biol Chem; 1996 Jul; 271(29):17321-9. PubMed ID: 8663322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimeric architecture of maltodextrin glucosidase (MalZ) provides insights into the substrate recognition and hydrolysis mechanism.
    Ahn WC; An Y; Song KM; Park KH; Lee SJ; Oh BH; Park JT; Woo EJ
    Biochem Biophys Res Commun; 2022 Jan; 586():49-54. PubMed ID: 34826700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase.
    Kang YN; Adachi M; Utsumi S; Mikami B
    J Mol Biol; 2004 Jun; 339(5):1129-40. PubMed ID: 15178253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of bond-cleavage pattern in the hydrolysis catalyzed by Saccharomycopsis alpha-amylase altered by site-directed mutagenesis.
    Matsui I; Ishikawa K; Miyairi S; Fukui S; Honda K
    Biochemistry; 1992 Jun; 31(22):5232-6. PubMed ID: 1606147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain.
    Kim TJ; Kim MJ; Kim BC; Kim JC; Cheong TK; Kim JW; Park KH
    Appl Environ Microbiol; 1999 Apr; 65(4):1644-51. PubMed ID: 10103262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for the recognition of α-1,6-branched α-glucan by GH13_47 α-amylase from Rhodothermus marinus.
    Miyasaka Y; Yokoyama K; Kozono T; Kitano Y; Miyazaki T; Sakaguchi M; Nishikawa A; Tonozuka T
    Proteins; 2024 Aug; 92(8):984-997. PubMed ID: 38641972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques.
    Brayer GD; Sidhu G; Maurus R; Rydberg EH; Braun C; Wang Y; Nguyen NT; Overall CM; Withers SG
    Biochemistry; 2000 Apr; 39(16):4778-91. PubMed ID: 10769135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of threonine 342 mutants of soybean beta-amylase: role of a conformational change of the inner loop in the catalytic mechanism.
    Kang YN; Tanabe A; Adachi M; Utsumi S; Mikami B
    Biochemistry; 2005 Apr; 44(13):5106-16. PubMed ID: 15794648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics reveals insight into how N226P and H227Y mutations affect maltose binding in the active site of α-glucosidase II from European honeybee, Apis mellifera.
    Punnatin P; Chanchao C; Chunsrivirot S
    PLoS One; 2020; 15(3):e0229734. PubMed ID: 32126122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.