These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1597601)

  • 1. Effect of ear-canal air pressure on evoked otoacoustic emissions.
    Naeve SL; Margolis RH; Levine SC; Fournier EM
    J Acoust Soc Am; 1992 Apr; 91(4 Pt 1):2091-5. PubMed ID: 1597601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of middle ear pressure on transient evoked otoacoustic emissions.
    Trine MB; Hirsch JE; Margolis RH
    Ear Hear; 1993 Dec; 14(6):401-7. PubMed ID: 8307244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are spontaneous otoacoustic emissions generated by self-sustained cochlear oscillators?
    Talmadge CL; Tubis A; Wit HP; Long GR
    J Acoust Soc Am; 1991 May; 89(5):2391-9. PubMed ID: 1860998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of negative middle-ear pressure on transient-evoked otoacoustic emissions.
    Marshall L; Heller LM; Westhusin LJ
    Ear Hear; 1997 Jun; 18(3):218-26. PubMed ID: 9201457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressurized transient otoacoustic emissions measured using click and chirp stimuli.
    Keefe DH; Patrick Feeney M; Hunter LL; Fitzpatrick DF; Sanford CA
    J Acoust Soc Am; 2018 Jan; 143(1):399. PubMed ID: 29390789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of static ear canal pressure on human spontaneous otoacoustic emissions: spectral width as a measure of the intra-cochlear oscillation amplitude.
    van Dijk P; Maat B; de Kleine E
    J Assoc Res Otolaryngol; 2011 Feb; 12(1):13-28. PubMed ID: 21061039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of evoked oto-acoustic emissions by changes in pressure in the external ear.
    Robinson PM; Haughton PM
    Br J Audiol; 1991 Apr; 25(2):131-3. PubMed ID: 2054542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves.
    Meenderink SW; van der Heijden M
    J Neurophysiol; 2010 Mar; 103(3):1448-55. PubMed ID: 20089817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion product otoacoustic emissions upon ear canal pressurization.
    Zebian M; Schirkonyer V; Hensel J; Vollbort S; Fedtke T; Janssen T
    J Acoust Soc Am; 2013 Apr; 133(4):EL331-7. PubMed ID: 23556700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response pattern based on the amplitude of ear canal recorded cochlear microphonic waveforms across acoustic frequencies in normal hearing subjects.
    Zhang M
    Trends Amplif; 2012 Jun; 16(2):117-26. PubMed ID: 22696071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the frequency separation of simultaneously evoked otoacoustic emissions' consecutive extrema and its relation to cochlear traveling waves.
    Zwicker E
    J Acoust Soc Am; 1990 Sep; 88(3):1639-41. PubMed ID: 2229680
    [No Abstract]   [Full Text] [Related]  

  • 14. A review of otoacoustic emissions.
    Probst R; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1991 May; 89(5):2027-67. PubMed ID: 1860995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of High Sound Exposure During Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children and Young Adults.
    Rodriguez AI; Thomas MLA; Fitzpatrick D; Janky KL
    Ear Hear; 2018; 39(2):269-277. PubMed ID: 29466264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].
    Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1109-13. PubMed ID: 23469540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of ear-canal pressure and contralateral acoustic stimulation on evoked otoacoustic emissions in humans.
    Veuillet E; Collet L; Morgon A
    Hear Res; 1992 Aug; 61(1-2):47-55. PubMed ID: 1526893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracochlear acoustic pressure measurements: transfer functions of the middle ear and cochlear mechanics.
    Magnan P; Dancer A; Probst R; Smurzynski J; Avan P
    Audiol Neurootol; 1999; 4(3-4):123-8. PubMed ID: 10187919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensating for ear-canal acoustics when measuring otoacoustic emissions.
    Charaziak KK; Shera CA
    J Acoust Soc Am; 2017 Jan; 141(1):515. PubMed ID: 28147590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.