BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 15976010)

  • 1. Large-scale modelling as a route to multiple surface comparisons of the CCP module family.
    Soares DC; Gerloff DL; Syme NR; Coulson AF; Parkinson J; Barlow PN
    Protein Eng Des Sel; 2005 Aug; 18(8):379-88. PubMed ID: 15976010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure and dynamics of the central CCP module pair of a poxvirus complement control protein.
    Henderson CE; Bromek K; Mullin NP; Smith BO; Uhrín D; Barlow PN
    J Mol Biol; 2001 Mar; 307(1):323-39. PubMed ID: 11243823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary conserved rigid module-domain interactions can be detected at the sequence level: the examples of complement and blood coagulation proteases.
    Gaboriaud C; Rossi V; Fontecilla-Camps JC; Arlaud GJ
    J Mol Biol; 1998 Sep; 282(2):459-70. PubMed ID: 9735300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EyeSite: a semi-automated database of protein families in the eye.
    Lee DA; Fefeu S; Edo-Ukeh AA; Orengo CA; Slingsby C
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D148-52. PubMed ID: 14681381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central modules of the vaccinia virus complement control protein are not in extensive contact.
    Kirkitadze MD; Henderson C; Price NC; Kelly SM; Mullin NP; Parkinson J; Dryden DT; Barlow PN
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):167-75. PubMed ID: 10548547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backbone dynamics of complement control protein (CCP) modules reveals mobility in binding surfaces.
    O'Leary JM; Bromek K; Black GM; Uhrinova S; Schmitz C; Wang X; Krych M; Atkinson JP; Uhrin D; Barlow PN
    Protein Sci; 2004 May; 13(5):1238-50. PubMed ID: 15096630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insight into protein T1, the non-allergenic member of the Bet v 1 allergen family-An in silico analysis.
    Ghosh D; Gupta-Bhattacharya S
    Mol Immunol; 2008 Jan; 45(2):456-62. PubMed ID: 17658604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationship of inhibitory Smads: Structural flexibility contributes to functional divergence.
    Hariharan R; Pillai MR
    Proteins; 2008 Jun; 71(4):1853-62. PubMed ID: 18175316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scoring docking models with evolutionary information.
    Tress M; de Juan D; Graña O; Gómez MJ; Gómez-Puertas P; González JM; López G; Valencia A
    Proteins; 2005 Aug; 60(2):275-80. PubMed ID: 15981273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional characterization of binding sites in metallocarboxypeptidases based on Optimal Docking Area analysis.
    Fernández D; Vendrell J; Avilés FX; Fernández-Recio J
    Proteins; 2007 Jul; 68(1):131-44. PubMed ID: 17407161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DMAPS: a database of multiple alignments for protein structures.
    Guda C; Pal LR; Shindyalov IN
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D273-6. PubMed ID: 16381863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BANMOKI: a searchable database of homology-based 3D models and their electrostatic properties of five bacterial nucleoside monophosphate kinase families.
    Kundrotas P; Georgieva P; Shosheva A; Christova P; Alexov E
    Int J Biol Macromol; 2007 Jun; 41(1):114-9. PubMed ID: 17320167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Walking through the protein sequence space: towards new generation of the homology modeling.
    Frenkel ZM; Trifonov EN
    Proteins; 2007 May; 67(2):271-84. PubMed ID: 17286283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MUSTANG: a multiple structural alignment algorithm.
    Konagurthu AS; Whisstock JC; Stuckey PJ; Lesk AM
    Proteins; 2006 Aug; 64(3):559-74. PubMed ID: 16736488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TOPOFIT-DB, a database of protein structural alignments based on the TOPOFIT method.
    Leslin CM; Abyzov A; Ilyin VA
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D317-21. PubMed ID: 17065464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences.
    Ye K; Kosters WA; Ijzerman AP
    Bioinformatics; 2007 Mar; 23(6):687-93. PubMed ID: 17237070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles.
    Kundrotas PJ; Lensink MF; Alexov E
    Int J Biol Macromol; 2008 Aug; 43(2):198-208. PubMed ID: 18572239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of neoculin: insights into its sweetness and taste-modifying activity.
    Shimizu-Ibuka A; Morita Y; Terada T; Asakura T; Nakajima K; Iwata S; Misaka T; Sorimachi H; Arai S; Abe K
    J Mol Biol; 2006 May; 359(1):148-58. PubMed ID: 16616933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase.
    Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP
    J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Ras-effector interactions using position energy matrices.
    Kiel C; Serrano L
    Bioinformatics; 2007 Sep; 23(17):2226-30. PubMed ID: 17599936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.