These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 15976297)

  • 1. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    Science; 2005 Jun; 308(5730):1890-2. PubMed ID: 15976297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the hydroxylation of phenolates by the Cu(2)O (2)(N,N'-dimethylethylenediamine) (2) (2+) complex.
    Güell M; Luis JM; Solà M; Siegbahn PE
    J Biol Inorg Chem; 2009 Feb; 14(2):229-42. PubMed ID: 18972140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex.
    Liu YF; Yu JG; Siegbahn PE; Blomberg MR
    Chemistry; 2013 Feb; 19(6):1942-54. PubMed ID: 23292840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry. Dioxygen surprises.
    Reedijk J
    Science; 2005 Jun; 308(5730):1876-7. PubMed ID: 15976293
    [No Abstract]   [Full Text] [Related]  

  • 5. mu-eta2:eta2-peroxodicopper(II) complex with a secondary diamine ligand: a functional model of tyrosinase.
    Mirica LM; Rudd DJ; Vance MA; Solomon EI; Hodgson KO; Hedman B; Stack TD
    J Am Chem Soc; 2006 Mar; 128(8):2654-65. PubMed ID: 16492052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: further insight into the mechanism of tyrosinase.
    Palavicini S; Granata A; Monzani E; Casella L
    J Am Chem Soc; 2005 Dec; 127(51):18031-6. PubMed ID: 16366554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenolate-bonded bis(μ-oxido)-bis-copper(III) intermediates: hydroxylation and dehalogenation reactivities.
    Kang P; Lin BL; Large TAG; Ainsworth J; Wasinger EC; Stack TDP
    Faraday Discuss; 2022 May; 234(0):86-108. PubMed ID: 35156114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stabilized mu-eta(2):eta(2) peroxodicopper(II) complex with a secondary diamine ligand and its tyrosinase-like reactivity.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    J Am Chem Soc; 2002 Aug; 124(32):9332-3. PubMed ID: 12167002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex.
    Garcia-Bosch I; Ribas X; Costas M
    Chemistry; 2012 Feb; 18(7):2113-22. PubMed ID: 22250002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the tyrosinase/O
    Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction coordinate of a functional model of tyrosinase: spectroscopic and computational characterization.
    Op't Holt BT; Vance MA; Mirica LM; Heppner DE; Stack TD; Solomon EI
    J Am Chem Soc; 2009 May; 131(18):6421-38. PubMed ID: 19368383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simplest Monodentate Imidazole Stabilization of the oxy-Tyrosinase Cu2 O2 Core: Phenolate Hydroxylation through a Cu(III) Intermediate.
    Chiang L; Keown W; Citek C; Wasinger EC; Stack TD
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10453-7. PubMed ID: 27440390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
    Itoh S
    Acc Chem Res; 2015 Jul; 48(7):2066-74. PubMed ID: 26086527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein.
    Matoba Y; Kihara S; Bando N; Yoshitsu H; Sakaguchi M; Kayama K; Yanagisawa S; Ogura T; Sugiyama M
    PLoS Biol; 2018 Dec; 16(12):e3000077. PubMed ID: 30596633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling tyrosinase activity. Effect of ligand topology on aromatic ring hydroxylation: an overview.
    De A; Mandal S; Mukherjee R
    J Inorg Biochem; 2008; 102(5-6):1170-89. PubMed ID: 18336914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties.
    Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S
    Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monooxygenase activity of type 3 copper proteins.
    Itoh S; Fukuzumi S
    Acc Chem Res; 2007 Jul; 40(7):592-600. PubMed ID: 17461541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping tyrosinase key active intermediate under turnover.
    Spada A; Palavicini S; Monzani E; Bubacco L; Casella L
    Dalton Trans; 2009 Sep; (33):6468-71. PubMed ID: 19672489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible dioxygen binding and phenol oxygenation in a tyrosinase model system.
    Santagostini L; Gullotti M; Monzani E; Casella L; Dillinger R; Tuczek F
    Chemistry; 2000 Feb; 6(3):519-22. PubMed ID: 10747419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete mechanism of sigma* intramolecular aromatic hydroxylation through O2 activation by a macrocyclic dicopper(I) complex.
    Poater A; Ribas X; Llobet A; Cavallo L; Solà M
    J Am Chem Soc; 2008 Dec; 130(52):17710-7. PubMed ID: 19055343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.