These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 15976458)
1. Direct transfer of NADH from malate dehydrogenase to complex I in Escherichia coli. Amarneh B; Vik SB Cell Biochem Biophys; 2005; 42(3):251-61. PubMed ID: 15976458 [TBL] [Abstract][Full Text] [Related]
2. Nucleotide-induced conformational changes in the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Pohl T; Schneider D; Hielscher R; Stolpe S; Dörner K; Kohlstädt M; Böttcher B; Hellwig P; Friedrich T Biochem Soc Trans; 2008 Oct; 36(Pt 5):971-5. PubMed ID: 18793172 [TBL] [Abstract][Full Text] [Related]
3. Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3-D modelling. Schmid R; Gerloff DL FEBS Lett; 2004 Dec; 578(1-2):163-8. PubMed ID: 15581635 [TBL] [Abstract][Full Text] [Related]
4. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria. Kotlyar AB; Maklashina E; Cecchini G Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970 [TBL] [Abstract][Full Text] [Related]
5. Binding of malate dehydrogenase and NADH channelling to complex I. Ovádi J; Huang Y; Spivey HO J Mol Recognit; 1994 Dec; 7(4):265-72. PubMed ID: 7734152 [TBL] [Abstract][Full Text] [Related]
6. Ion translocation by the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Friedrich T; Stolpe S; Schneider D; Barquera B; Hellwig P Biochem Soc Trans; 2005 Aug; 33(Pt 4):836-9. PubMed ID: 16042610 [TBL] [Abstract][Full Text] [Related]
7. Leber hereditary optic neuropathy mutations in the ND6 subunit of mitochondrial complex I affect ubiquinone reduction kinetics in a bacterial model of the enzyme. Pätsi J; Kervinen M; Finel M; Hassinen IE Biochem J; 2008 Jan; 409(1):129-37. PubMed ID: 17894548 [TBL] [Abstract][Full Text] [Related]
8. A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Kervinen M; Pätsi J; Finel M; Hassinen IE Biochemistry; 2004 Jan; 43(3):773-81. PubMed ID: 14730982 [TBL] [Abstract][Full Text] [Related]
9. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase. Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973 [TBL] [Abstract][Full Text] [Related]
10. Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. Rapisarda VA; Montelongo LR; Farías RN; Massa EM Arch Biochem Biophys; 1999 Oct; 370(2):143-50. PubMed ID: 10510271 [TBL] [Abstract][Full Text] [Related]
11. Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Pohl T; Uhlmann M; Kaufenstein M; Friedrich T Biochemistry; 2007 Sep; 46(37):10694-702. PubMed ID: 17722886 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a ternary complex of Escherichia coli malate dehydrogenase citrate and NAD at 1.9 A resolution. Hall MD; Banaszak LJ J Mol Biol; 1993 Jul; 232(1):213-22. PubMed ID: 8331658 [TBL] [Abstract][Full Text] [Related]
13. An isothermal titration calorimetry study of the binding of substrates and ligands to the tartrate dehydrogenase from Pseudomonas putida reveals half-of-the-sites reactivity. Karsten WE; Cook PF Biochemistry; 2006 Jul; 45(29):9000-6. PubMed ID: 16846243 [TBL] [Abstract][Full Text] [Related]
14. Modification of substrate specificity in single point mutants of Agrobacterium tumefaciens type II NADH dehydrogenase. Desplats C; Beyly A; Cuiné S; Bernard L; Cournac L; Peltier G FEBS Lett; 2007 Aug; 581(21):4017-22. PubMed ID: 17673203 [TBL] [Abstract][Full Text] [Related]
15. Iron-sulfur cluster N7 of the NADH:ubiquinone oxidoreductase (complex I) is essential for stability but not involved in electron transfer. Pohl T; Bauer T; Dörner K; Stolpe S; Sell P; Zocher G; Friedrich T Biochemistry; 2007 Jun; 46(22):6588-96. PubMed ID: 17489563 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant. Tomita T; Fushinobu S; Kuzuyama T; Nishiyama M Biochem Biophys Res Commun; 2006 Aug; 347(2):502-8. PubMed ID: 16828705 [TBL] [Abstract][Full Text] [Related]
18. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Xu H; West AH; Cook PF Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315 [TBL] [Abstract][Full Text] [Related]
19. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). Zu Y; Shannon RJ; Hirst J J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808 [TBL] [Abstract][Full Text] [Related]
20. Activation of isolated NADH:ubiquinone reductase I (complex I) from Escherichia coli by detergent and phospholipids. Recovery of ubiquinone reductase activity and changes in EPR signals of iron-sulfur clusters. Sinegina L; Wikström M; Verkhovsky MI; Verkhovskaya ML Biochemistry; 2005 Jun; 44(23):8500-6. PubMed ID: 15938640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]