These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15976583)

  • 21. Rigid gas-permeable contact lens base curve radius and transmissibility effects on corneal oxygen uptake.
    Fink BA; Mitchell GL; Hill RM
    Optom Vis Sci; 2006 Oct; 83(10):740-4. PubMed ID: 17041319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of high and low Dk/L soft contact lenses on the glycocalyx layer of the corneal epithelium and on the membrane associated receptors for lectins.
    Latkovic S; Nilsson SE
    CLAO J; 1997 Jul; 23(3):185-91. PubMed ID: 9240830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A three-dimensional model to describe complete human corneal oxygenation during contact lens wear.
    Aguilella-Arzo M; Compañ V
    J Biomed Mater Res B Appl Biomater; 2023 Mar; 111(3):610-621. PubMed ID: 36214217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses.
    Holden BA; Mertz GW
    Invest Ophthalmol Vis Sci; 1984 Oct; 25(10):1161-7. PubMed ID: 6592160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffusion and Monod kinetics to determine in vivo human corneal oxygen-consumption rate during soft contact-lens wear.
    Chhabra M; Prausnitz JM; Radke CJ
    J Biomed Mater Res B Appl Biomater; 2009 Jul; 90(1):202-9. PubMed ID: 19086056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of increasing Dk with rigid contact lens extended wear on rabbit corneal epithelium using confocal microscopy.
    Ichijima H; Petroll WM; Jester JV; Ohashi J; Cavanagh HD
    Cornea; 1992 Jul; 11(4):282-7. PubMed ID: 1424646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corneal oxygen availability during contact lens wear: a comparison of methodologies.
    Brennan NA; Efron N; Carney LG
    Am J Optom Physiol Opt; 1988 Jan; 65(1):19-24. PubMed ID: 3348346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rigid contact lens area and corneal oxygenation.
    Mandell RB; Kang L
    Am J Optom Physiol Opt; 1988 May; 65(5):387-94. PubMed ID: 3407725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of rigid gas permeable contact lens wear on proliferation of rabbit corneal and conjunctival epithelial cells.
    Ren DH; Petroll WM; Jester JV; Cavanagh HD
    CLAO J; 1999 Jul; 25(3):136-41. PubMed ID: 10444048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The significance of oxygen during contact lens wear.
    Papas EB
    Cont Lens Anterior Eye; 2014 Dec; 37(6):394-404. PubMed ID: 25139718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological oxygen apparent transmissibility of hydrogel contact lenses with and without organosilicon moieties.
    Compañ V; López-Alemany A; Riande E; Refojo MF
    Biomaterials; 2004 Jan; 25(2):359-65. PubMed ID: 14585724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Corneal oxygen uptake associated with piggyback contact lens systems.
    Florkey LN; Fink BA; Mitchell GL; Hill RM
    Cornea; 2007 Apr; 26(3):324-35. PubMed ID: 17413961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tear lactate dehydrogenase levels. A new method to assess effects of contact lens wear in man.
    Ichijima H; Imayasu M; Ohashi J; Cavanagh HD
    Cornea; 1992 Mar; 11(2):114-20. PubMed ID: 1582213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corneal hypoxia and hypercapnia during contact lens wear.
    Ang JH; Efron N
    Optom Vis Sci; 1990 Jul; 67(7):512-21. PubMed ID: 2119489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Berkeley Contact Lens Extended Wear Study. Part II : Clinical results.
    Polse KA; Graham AD; Fusaro RE; Gan CM; Rivera RK; Lin MC; Sanders TL; McNamara NA; Chan JS
    Ophthalmology; 2001 Aug; 108(8):1389-99. PubMed ID: 11470689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct noninvasive measurement of tear oxygen tension beneath gas-permeable contact lenses in rabbits.
    Harvitt DM; Bonanno JA
    Invest Ophthalmol Vis Sci; 1996 May; 37(6):1026-36. PubMed ID: 8631618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lifetime Corneal Edema Load Model.
    Thomson R; Mobeen R; Ho A; Fonn D; Sweeney DF
    Transl Vis Sci Technol; 2021 Feb; 10(2):34. PubMed ID: 34003919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling Corneal Oxygen with Scleral Gas Permeable Lens Wear.
    Compañ V; Aguilella-Arzo M; Edrington TB; Weissman BA
    Optom Vis Sci; 2016 Nov; 93(11):1339-1348. PubMed ID: 27741084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A refined model on flow and oxygen consumption in the human cornea depending on the oxygen tension at the interface cornea/post lens tear film during contact lens wear.
    Moreno VC; Aguilella-Arzo M; Del Castillo RM; Espinós FJ; Del Castillo LF
    J Optom; 2022; 15(2):160-174. PubMed ID: 33589396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calculated tear oxygen tension under contact lenses offering resistance in series: piggyback and scleral lenses.
    Weissman BA; Ye P
    Cont Lens Anterior Eye; 2006 Dec; 29(5):231-7. PubMed ID: 17064950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.