These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15977039)

  • 41. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Markerless patient registration. A new technique for image-guided surgery of the lateral base of the skull].
    Marmulla R; Mühling J; Eggers G; Hassfeld S
    HNO; 2005 Feb; 53(2):148-54. PubMed ID: 15221084
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of the first force-controlled robot for otoneurosurgery.
    Federspil PA; Geisthoff UW; Henrich D; Plinkert PK
    Laryngoscope; 2003 Mar; 113(3):465-71. PubMed ID: 12616198
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Accuracy analysis of robotic assistant needle placement for trigeminal gasserian ganglion].
    Zhu JH; Wang J; Liu XJ; Guo CB
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Oct; 51(5):973-976. PubMed ID: 31624409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours.
    Xu J; Jia ZZ; Song ZJ; Yang XD; Chen K; Liang P
    Int J Med Robot; 2010 Sep; 6(3):256-68. PubMed ID: 20564429
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A surgical robot for cochleostomy.
    Brett PN; Taylor RP; Proops D; Coulson C; Reid A; Griffiths MV
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1229-32. PubMed ID: 18002185
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of a neurosurgical robotic system to make accurate burr holes.
    Brodie J; Eljamel S
    Int J Med Robot; 2011 Mar; 7(1):101-6. PubMed ID: 21341368
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of robot-assisted and conventional total knee arthroplasty: a controlled cadaver study using multiparameter quantitative three-dimensional CT assessment of alignment.
    Moon YW; Ha CW; Do KH; Kim CY; Han JH; Na SE; Lee CH; Kim JG; Park YS
    Comput Aided Surg; 2012; 17(2):86-95. PubMed ID: 22348661
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Novel System for Navigation-and Robot-Assisted Craniofacial Surgery: Establishment of the Principle Prototype.
    Gui H; Zhang S; Luan N; Lin Y; Shen SG; Bautista JS
    J Craniofac Surg; 2015 Nov; 26(8):e746-9. PubMed ID: 26594995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
    Barkana DE
    Int J Med Robot; 2010 Mar; 6(1):42-56. PubMed ID: 19943336
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A robot for transnasal surgery featuring needle-sized tentacle-like arms.
    Gilbert H; Hendrick R; Remirez A; Webster R
    Expert Rev Med Devices; 2014 Jan; 11(1):5-7. PubMed ID: 24308740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Precision in orthopaedic computer navigation].
    Hüfner T; Kendoff D; Citak M; Geerling J; Krettek C
    Orthopade; 2006 Oct; 35(10):1043-55. PubMed ID: 16917764
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Present state and future perspectives of computer aided surgery in the field of ENT and skull base.
    Caversaccio M; Nolte LP; Häusler R
    Acta Otorhinolaryngol Belg; 2002; 56(1):51-9. PubMed ID: 11894631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implementation, accuracy evaluation, and preliminary clinical trial of a CT-free navigation system for high tibial opening wedge osteotomy.
    Wang G; Zheng G; Keppler P; Gebhard F; Staubli A; Mueller U; Schmucki D; Fluetsch S; Nolte LP
    Comput Aided Surg; 2005 Mar; 10(2):73-85. PubMed ID: 16298918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Intraoperative navigation in surgery of paranasal sinus and anterior skull base].
    Ecke U; Khan M; Maurer J; Boor S; Mann WJ
    HNO; 2002 Oct; 50(10):928-34. PubMed ID: 12376907
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An image-guided robot system for direct cochlear access.
    Bell B; Williamson T; Gerber N; Gavaghan K; Wimmer W; Kompis M; Weber S; Caversaccio M
    Cochlear Implants Int; 2014 May; 15 Suppl 1():S11-3. PubMed ID: 24869430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robot-assisted orthopedic surgery.
    Adili A
    Semin Laparosc Surg; 2004 Jun; 11(2):89-98. PubMed ID: 15254647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Feasibility of using EMG for early detection of the facial nerve during robotic direct cochlear access.
    Ansó J; Stahl C; Gerber N; Williamson T; Gavaghan K; Rösler KM; Caversaccio MD; Weber S; Bell B
    Otol Neurotol; 2014 Mar; 35(3):545-54. PubMed ID: 24492132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery.
    Nimsky Ch; Rachinger J; Iro H; Fahlbusch R
    Minim Invasive Neurosurg; 2004 Feb; 47(1):41-6. PubMed ID: 15100931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clinical requirements and possible applications of robot assisted endoscopy in skull base and sinus surgery.
    Eichhorn KW; Bootz F
    Acta Neurochir Suppl; 2011; 109():237-40. PubMed ID: 20960349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.