These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 1597708)

  • 1. Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex.
    Hasselmo ME; Bower JM
    J Neurophysiol; 1992 May; 67(5):1222-9. PubMed ID: 1597708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective suppression of afferent but not intrinsic fiber synaptic transmission by 2-amino-4-phosphonobutyric acid (AP4) in piriform cortex.
    Hasselmo ME; Bower JM
    Brain Res; 1991 May; 548(1-2):248-55. PubMed ID: 1651141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of inhibitory synaptic potentials in the piriform cortex.
    Patil MM; Hasselmo ME
    J Neurophysiol; 1999 May; 81(5):2103-18. PubMed ID: 10322052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective suppression of intrinsic but not afferent fiber synaptic transmission by baclofen in the piriform (olfactory) cortex.
    Tang AC; Hasselmo ME
    Brain Res; 1994 Oct; 659(1-2):75-81. PubMed ID: 7820683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices.
    Patil MM; Linster C; Lubenov E; Hasselmo ME
    J Neurophysiol; 1998 Nov; 80(5):2467-74. PubMed ID: 9819256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane currents evoked by afferent fiber stimulation in rat piriform cortex. I. Current source-density analysis.
    Ketchum KL; Haberly LB
    J Neurophysiol; 1993 Jan; 69(1):248-60. PubMed ID: 8381858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Afferent and association fiber differences in short-term potentiation in piriform (olfactory) cortex of the rat.
    Hasselmo ME; Bower JM
    J Neurophysiol; 1990 Jul; 64(1):179-90. PubMed ID: 2388064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology.
    Hasselmo ME; Schnell E
    J Neurosci; 1994 Jun; 14(6):3898-914. PubMed ID: 8207494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic suppression of excitatory synaptic responses in layer II of the medial entorhinal cortex.
    Hamam BN; Sinai M; Poirier G; Chapman CA
    Hippocampus; 2007; 17(2):103-13. PubMed ID: 17146776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of associative memory function in a biophysical simulation of rat piriform cortex.
    Barkai E; Bergman RE; Horwitz G; Hasselmo ME
    J Neurophysiol; 1994 Aug; 72(2):659-77. PubMed ID: 7527075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio.
    Hasselmo ME; Linster C; Patil M; Ma D; Cekic M
    J Neurophysiol; 1997 Jun; 77(6):3326-39. PubMed ID: 9212278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actions of cholinergic agonists and antagonists on sensory nerve endings in rat skin, in vitro.
    Steen KH; Reeh PW
    J Neurophysiol; 1993 Jul; 70(1):397-405. PubMed ID: 8103089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic modulation of excitability in the rat olfactory bulb: effect of local application of cholinergic agents on evoked field potentials.
    Elaagouby A; Ravel N; Gervais R
    Neuroscience; 1991; 45(3):653-62. PubMed ID: 1775240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for presynaptic inhibition of the olfactory commissural pathway by cholinergic agonists and stimulation of the nucleus of the diagonal band.
    Nickell WT; Shipley MT
    J Neurosci; 1993 Feb; 13(2):650-9. PubMed ID: 8426231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-cholinergic facilitation of glutamate release from an individual retinotectal fiber in frog.
    Kuras A; Gutmaniene N
    Vis Neurosci; 2001; 18(4):549-58. PubMed ID: 11829301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-methyl-D-aspartate receptors at parallel fiber synapses in the dorsal cochlear nucleus.
    Manis PB; Molitor SC
    J Neurophysiol; 1996 Sep; 76(3):1639-56. PubMed ID: 8890282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postsynaptic cell type-dependent cholinergic regulation of GABAergic synaptic transmission in rat insular cortex.
    Yamamoto K; Koyanagi Y; Koshikawa N; Kobayashi M
    J Neurophysiol; 2010 Oct; 104(4):1933-45. PubMed ID: 20685921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic receptor activation induces a relative facilitation of synaptic responses in the entorhinal cortex during theta- and gamma-frequency stimulation of parasubicular inputs.
    Sparks DW; Chapman CA
    Neuroscience; 2013 Jan; 230():72-85. PubMed ID: 23201257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of muscarinic M1 receptors to the cholinergic suppression of synaptic responses in layer II of the entorhinal cortex.
    Barrett SG; Chapman CA
    Neurosci Lett; 2013 Oct; 554():11-5. PubMed ID: 24012918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological characterization of laminar synaptic inputs to the olfactory tubercle of the rat studied in vitro: modulation of glutamatergic transmission by cholinergic agents is pathway-specific.
    Owen GS; Halliwell JV
    Eur J Neurosci; 2001 May; 13(9):1767-80. PubMed ID: 11359528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.