These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15977281)

  • 1. Are the hydrogen bonds of RNA (AU) stronger than those of DNA (AT)? A quantum mechanics study.
    Pérez A; Sponer J; Jurecka P; Hobza P; Luque FJ; Orozco M
    Chemistry; 2005 Aug; 11(17):5062-6. PubMed ID: 15977281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family.
    Sponer JE; Spacková N; Kulhanek P; Leszczynski J; Sponer J
    J Phys Chem A; 2005 Mar; 109(10):2292-301. PubMed ID: 16838999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations.
    Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE
    J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.
    Bandyopadhyay D; Bhattacharyya D
    Biopolymers; 2006 Oct; 83(3):313-25. PubMed ID: 16729290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of the cis Hoogsteen:sugar-edge family of base pairs in platforms and triplets-quantum chemical insights into RNA structural biology.
    Sharma P; Sponer JE; Sponer J; Sharma S; Bhattacharyya D; Mitra A
    J Phys Chem B; 2010 Mar; 114(9):3307-20. PubMed ID: 20163171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non covalent interactions in RNA and DNA base pairs: a quantum-mechanical study of the coupling between solvent and electronic density.
    Lipparini F; Scalmani G; Mennucci B
    Phys Chem Chem Phys; 2009 Dec; 11(48):11617-23. PubMed ID: 20024434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N1...N3 hydrogen bonds of A:U base pairs of RNA are stronger than those of A:T base pairs of DNA.
    Vakonakis I; LiWang AC
    J Am Chem Soc; 2004 May; 126(18):5688-9. PubMed ID: 15125660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the effects of sequence and structure on the hydrogen bonding and π-stacking interactions in nucleic acids.
    Kamya PR; Muchall HM
    J Phys Chem A; 2011 Nov; 115(45):12800-8. PubMed ID: 21721560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases.
    Sponer J; Leszczynski J; Hobza P
    Biopolymers; 2001-2002; 61(1):3-31. PubMed ID: 11891626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations.
    Sponer JE; Leszczynski J; Sychrovský V; Sponer J
    J Phys Chem B; 2005 Oct; 109(39):18680-9. PubMed ID: 16853403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view.
    Sponer JE; Réblova K; Mokdad A; Sychrovský V; Leszczynski J; Sponer J
    J Phys Chem B; 2007 Aug; 111(30):9153-64. PubMed ID: 17602515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen bonds of RNA are stronger than those of DNA, but NMR monitors only presence of methyl substituent in uracil/thymine.
    Swart M; Fonseca Guerra C; Bickelhaupt FM
    J Am Chem Soc; 2004 Dec; 126(51):16718-9. PubMed ID: 15612698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational determinants of tandem GU mismatches in RNA: insights from molecular dynamics simulations and quantum mechanical calculations.
    Pan Y; Priyakumar UD; MacKerell AD
    Biochemistry; 2005 Feb; 44(5):1433-43. PubMed ID: 15683228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bond detection.
    Thar J; Kirchner B
    J Phys Chem A; 2006 Mar; 110(12):4229-37. PubMed ID: 16553374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of interaction energies of substituted hydrogen-bonded Watson-Crick cytosine:guanine(8X) base pairs.
    Xue C; Popelier PL
    J Phys Chem B; 2009 Mar; 113(10):3245-50. PubMed ID: 19260717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the competition between intramolecular hydrogen bonds and solvation in the Cys-Asn-Ser tripeptide.
    Soriano-Correa C; Olivares del Valle FJ; Muñoz-Losa A; Fdez Galván I; Martín ME; Aguilar MA
    J Phys Chem B; 2010 Jul; 114(27):8961-70. PubMed ID: 20568808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkable metal counterion effect on the internucleotide J-couplings and chemical shifts of the N-H...N hydrogen bonds in the W-C base pairs.
    Li H; Cukier RI; Bu Y
    J Phys Chem B; 2008 Jul; 112(30):9174-81. PubMed ID: 18598072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies.
    Roy A; Panigrahi S; Bhattacharyya M; Bhattacharyya D
    J Phys Chem B; 2008 Mar; 112(12):3786-96. PubMed ID: 18318519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.