These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1597744)

  • 1. Compensation for three-dimensional detector response, attenuation and scatter in SPECT grey matter imaging using an iterative reconstruction algorithm which incorporates a high-resolution anatomical image.
    Kim HJ; Zeeberg BR; Reba RC
    J Nucl Med; 1992 Jun; 33(6):1225-34. PubMed ID: 1597744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of reconstruction algorithms in SPECT neuroimaging: I. Comparison of statistical noise in SPECT neuroimages with 'naive' and 'realistic' predictions.
    Kim HJ; Zeeberg BR; Reba RC
    Phys Med Biol; 1993 Jul; 38(7):863-79. PubMed ID: 8372106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional SPECT simulations of a complex three-dimensional mathematical brain model and measurements of the three-dimensional physical brain phantom.
    Kim HJ; Zeeberg BR; Fahey FH; Bice AN; Hoffman EJ; Reba RC
    J Nucl Med; 1991 Oct; 32(10):1923-30. PubMed ID: 1919734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: a simulation study.
    Yokoi T; Shinohara H; Onishi H
    Ann Nucl Med; 2002 Feb; 16(1):11-8. PubMed ID: 11922203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of reconstruction algorithms in SPECT neuroimaging: II. Computation of deterministic and statistical error components.
    Kim HJ; Zeeberg BR; Reba RC
    Phys Med Biol; 1993 Jul; 38(7):881-95. PubMed ID: 8372107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation for attenuation, scatter, and detector response in SPECT reconstruction via iterative FBP methods.
    Liang Z
    Med Phys; 1993; 20(4):1097. PubMed ID: 8413018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation.
    Beekman FJ; de Jong HW; van Geloven S
    IEEE Trans Med Imaging; 2002 Aug; 21(8):867-77. PubMed ID: 12472260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximate 3D iterative reconstruction for SPECT.
    Gilland DR; Jaszczak RJ; Riauka TA; Coleman RE
    Med Phys; 1997 Sep; 24(9):1421-9. PubMed ID: 9304570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative SPECT reconstruction of iodine-123 data.
    Gilland DR; Jaszczak RJ; Greer KL; Coleman RE
    J Nucl Med; 1991 Mar; 32(3):527-33. PubMed ID: 2005465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Including anatomical and functional information in MC simulation of PET and SPECT brain studies. Brain-VISET: a voxel-based iterative method.
    Marti-Fuster B; Esteban O; Thielemans K; Setoain X; Santos A; Ros D; Pavia J
    IEEE Trans Med Imaging; 2014 Oct; 33(10):1931-8. PubMed ID: 24876110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of attenuation correction and reconstruction techniques on the detection of hypo-perfused lesions in brain SPECT images.
    Ghoorun S; Baete K; Nuyts J; Groenewald W; Dupont P
    Nucl Med Commun; 2006 Oct; 27(10):765-72. PubMed ID: 16969257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT.
    Frey EC; Gilland KL; Tsui BM
    IEEE Trans Med Imaging; 2002 Sep; 21(9):1040-50. PubMed ID: 12564872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wavelet-based SPECT reconstruction algorithm for nonuniformly attenuated Radon transform.
    Wen J; Kong L
    Med Phys; 2010 Sep; 37(9):4762-7. PubMed ID: 20964195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of registration of PET, SPECT and MR images of a brain phantom.
    Turkington TG; Jaszczak RJ; Pelizzari CA; Harris CC; MacFall JR; Hoffman JM; Coleman RE
    J Nucl Med; 1993 Sep; 34(9):1587-94. PubMed ID: 8355080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super resolution SPECT reconstruction with non-uniform attenuation.
    Yan Z; Lu Y; Wen J; Li C
    Comput Biol Med; 2012 Jun; 42(6):651-6. PubMed ID: 22440892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of reconstruction techniques in regional cerebral blood flow SPECT using trade-off plots: a Monte Carlo study.
    Olsson A; Arlig A; Carlsson GA; Gustafsson A
    Nucl Med Commun; 2007 Sep; 28(9):719-25. PubMed ID: 17667751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT.
    Vandervoort E; Celler A; Harrop R
    Phys Med Biol; 2007 Mar; 52(5):1527-45. PubMed ID: 17301469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A projector/backprojector with slice-to-slice blurring for efficient three-dimensional scatter modeling.
    Zeng GL; Bai C; Gullberg GT
    IEEE Trans Med Imaging; 1999 Aug; 18(8):722-32. PubMed ID: 10534054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative rotating multisegment slant-hole SPECT mammography with attenuation and collimator-detector response compensation.
    Xu J; Liu C; Wang Y; Frey EC; Tsui BM
    IEEE Trans Med Imaging; 2007 Jul; 26(7):906-16. PubMed ID: 17649904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.