These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 15977734)

  • 1. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1040-9. PubMed ID: 15977734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1389-98. PubMed ID: 17694859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of neural refractoriness on spatio-temporal variability in spike initiations with Electrical stimulation.
    Mino H; Rubinstein JT
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):273-80. PubMed ID: 17009486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the threshold of single-pulse electrical stimuli using a stochastic auditory nerve model: the effects of noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):825-35. PubMed ID: 12848350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of neural stochastic firing in cochlear implant stimulation by the addition of noise: a computational study of the influence of stimulation settings and spontaneous activity.
    Paglialonga A; Fiocchi S; Ravazzani P; Tognola G
    Comput Biol Med; 2010 Jun; 40(6):597-606. PubMed ID: 20471638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of temporal properties on compound action potentials in response to amplitude-modulated electric pulse trains in guinea pigs.
    Jeng FC; Abbas PJ; Hu N; Miller CA; Nourski KV; Robinson BK
    Hear Res; 2009 Jan; 247(1):47-59. PubMed ID: 19015019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting auditory tone-in-noise detection performance: the effects of neural variability.
    Huettel LG; Collins LM
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):282-93. PubMed ID: 14765701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination.
    Javel E; Viemeister NF
    J Acoust Soc Am; 2000 Feb; 107(2):908-21. PubMed ID: 10687700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains.
    Runge-Samuelson CL; Abbas PJ; Rubinstein JT; Miller CA; Robinson BK
    Hear Res; 2004 Aug; 194(1-2):1-13. PubMed ID: 15276671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.
    Nourski KV; Abbas PJ; Miller CA; Robinson BK; Jeng FC
    Hear Res; 2005 Apr; 202(1-2):141-53. PubMed ID: 15811706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual consequences of disrupted auditory nerve activity.
    Zeng FG; Kong YY; Michalewski HJ; Starr A
    J Neurophysiol; 2005 Jun; 93(6):3050-63. PubMed ID: 15615831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An introduction to the biophysics of the electrically evoked compound action potential.
    Rubinstein JT
    Int J Audiol; 2004 Dec; 43 Suppl 1():S3-9. PubMed ID: 15732375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli.
    Schaette R; Gollisch T; Herz AV
    J Neurophysiol; 2005 Jun; 93(6):3270-81. PubMed ID: 15689392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of interpulse interval on stochastic properties of electrical stimulation: models and measurements.
    Matsuoka AJ; Rubinstein JT; Abbas PJ; Miller CA
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):416-24. PubMed ID: 11322529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of stimulus attenuation in cochlear implants.
    Smit JE; Hanekom T; Hanekom JJ
    J Neurosci Methods; 2009 Jun; 180(2):363-73. PubMed ID: 19464523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.