BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15977737)

  • 1. Using EMG to anticipate head motion for virtual-environment applications.
    Barniv Y; Aguilar M; Hasanbelliu E
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1078-93. PubMed ID: 15977737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time tracking of visually attended objects in virtual environments and its application to LOD.
    Lee S; Kim GJ; Choi S
    IEEE Trans Vis Comput Graph; 2009; 15(1):6-19. PubMed ID: 19008552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Head orientation prediction: delta quaternions versus quaternions.
    Himberg H; Motai Y
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1382-92. PubMed ID: 19493852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Head stabilization shows visual and inertial dependence during passive stimulation: implications for virtual rehabilitation.
    Wright WG; Agah MR; Darvish K; Keshner EA
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):191-7. PubMed ID: 23314779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural perspective projections for head-mounted displays.
    Steinicke F; Bruder G; Kuhl S; Willemsen P; Lappe M; Hinrichs KH
    IEEE Trans Vis Comput Graph; 2011 Jul; 17(7):888-99. PubMed ID: 21546652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand.
    Chu JU; Moon I; Mun MS
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a learning module using a virtual environment to demonstrate EMG and telerobotic control principles.
    Patterson PE
    Biomed Sci Instrum; 2002; 38():313-6. PubMed ID: 12085623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An immersive simulation system for provoking and analyzing cataplexy.
    Augustine K; Cameron B; Camp J; Krahn L; Robb R
    Stud Health Technol Inform; 2002; 85():31-7. PubMed ID: 15458056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medicine in virtual environments.
    Dumay AC
    Technol Health Care; 1995 Oct; 3(2):75-89. PubMed ID: 8574765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model of head-neck joint fast movements in the frontal plane.
    Pedrocchi A; Ferrigno G
    Biol Cybern; 2004 Jun; 90(6):377-89. PubMed ID: 15316785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neck range of motion and use of computer head controls.
    LoPresti EF; Brienza DM; Angelo J; Gilbertson L
    J Rehabil Res Dev; 2003; 40(3):199-211. PubMed ID: 14582524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real and virtual explorations of the environment and interactive tracking of movable objects for the blind on the basis of tactile-acoustical maps and 3D environment models.
    Hub A; Hartter T; Kombrink S; Ertl T
    Disabil Rehabil Assist Technol; 2008 Jan; 3(1):57-68. PubMed ID: 18416518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread presaccadic recruitment of neck muscles by stimulation of the primate frontal eye fields.
    Elsley JK; Nagy B; Cushing SL; Corneil BD
    J Neurophysiol; 2007 Sep; 98(3):1333-54. PubMed ID: 17625064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual head rotation reveals a process of route reconstruction from human vestibular signals.
    Day BL; Fitzpatrick RC
    J Physiol; 2005 Sep; 567(Pt 2):591-7. PubMed ID: 16002439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cervical motion assessment using virtual reality.
    Sarig-Bahat H; Weiss PL; Laufer Y
    Spine (Phila Pa 1976); 2009 May; 34(10):1018-24. PubMed ID: 19404177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive responses in eye-head-hand coordination following exposures to a virtual environment as a possible space flight analog.
    Harm DL; Taylor LC; Bloomberg JJ
    J Gravit Physiol; 2007 Jul; 14(1):P83-4. PubMed ID: 18372711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling human behaviors and reactions under dangerous environment.
    Kang J; Wright DK; Qin SF; Zhao Y
    Biomed Sci Instrum; 2005; 41():265-70. PubMed ID: 15850116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric calibration of head-mounted displays and its effects on distance estimation.
    Kellner F; Bolte B; Bruder G; Rautenberg U; Steinicke F; Lappe M; Koch R
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):589-96. PubMed ID: 22402686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demand characteristics in assessing motion sickness in a virtual environment: or does taking a motion sickness questionnaire make you sick?
    Young SD; Adelstein BD; Ellis SR
    IEEE Trans Vis Comput Graph; 2007; 13(3):422-8. PubMed ID: 17356210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.