These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 15978022)

  • 21. Psychological and neural mechanisms of the affective dimension of pain.
    Price DD
    Science; 2000 Jun; 288(5472):1769-72. PubMed ID: 10846154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Common cortical network for first and second pain.
    Forss N; Raij TT; Seppä M; Hari R
    Neuroimage; 2005 Jan; 24(1):132-42. PubMed ID: 15588604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paralimbic and medial prefrontal cortical involvement in neuroendocrine responses to traumatic stimuli.
    Liberzon I; King AP; Britton JC; Phan KL; Abelson JL; Taylor SF
    Am J Psychiatry; 2007 Aug; 164(8):1250-8. PubMed ID: 17671289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical processing of visceral and somatic stimulation: differentiating pain intensity from unpleasantness.
    Dunckley P; Wise RG; Aziz Q; Painter D; Brooks J; Tracey I; Chang L
    Neuroscience; 2005; 133(2):533-42. PubMed ID: 15896917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of Fos expression within the ferret's spinal trigeminal nuclear complex evoked by electrical or noxious-thermal pulpal stimulation.
    Chattipakorn S; Chattipakorn N; Light AR; Narhi M; Maixner W
    J Pain; 2005 Sep; 6(9):569-80. PubMed ID: 16139776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans.
    Iannetti GD; Zambreanu L; Cruccu G; Tracey I
    Neuroscience; 2005; 131(1):199-208. PubMed ID: 15680703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cortical projection of the rat knee joint innervation and its processing in the somatosensory areas SI and SII.
    Heppelmann B; Pawlak M; Just S; Schmidt RF
    Exp Brain Res; 2001 Dec; 141(4):501-6. PubMed ID: 11810143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early cortical activities evoked by noxious stimulation in humans.
    Wang X; Inui K; Kakigi R
    Exp Brain Res; 2007 Jul; 180(3):481-9. PubMed ID: 17390127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerebellar neural responses related to actively and passively applied noxious thermal stimulation in human subjects: a parametric fMRI study.
    Helmchen C; Mohr C; Erdmann C; Binkofski F
    Neurosci Lett; 2004 May; 361(1-3):237-40. PubMed ID: 15135937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cortical interactions and integration of nociceptive and non-nociceptive somatosensory inputs in humans.
    Mouraux A; Plaghki L
    Neuroscience; 2007 Nov; 150(1):72-81. PubMed ID: 17976921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single trial fMRI reveals significant contralateral bias in responses to laser pain within thalamus and somatosensory cortices.
    Bingel U; Quante M; Knab R; Bromm B; Weiller C; Büchel C
    Neuroimage; 2003 Mar; 18(3):740-8. PubMed ID: 12667851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anticipatory electroencephalography alpha rhythm predicts subjective perception of pain intensity.
    Babiloni C; Brancucci A; Del Percio C; Capotosto P; Arendt-Nielsen L; Chen AC; Rossini PM
    J Pain; 2006 Oct; 7(10):709-17. PubMed ID: 17018331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pain processing during three levels of noxious stimulation produces differential patterns of central activity.
    Derbyshire SWG; Jones AKP; Gyulai F; Clark S; Townsend D; Firestone LL
    Pain; 1997 Dec; 73(3):431-445. PubMed ID: 9469535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography.
    Casey KL; Morrow TJ; Lorenz J; Minoshima S
    J Neurophysiol; 2001 Feb; 85(2):951-9. PubMed ID: 11160525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of A- versus C-nociceptive inputs into spinal-brainstem circuits.
    Parry DM; Macmillan FM; Koutsikou S; McMullan S; Lumb BM
    Neuroscience; 2008 Apr; 152(4):1076-85. PubMed ID: 18328632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective attention to affective value alters how the brain processes taste stimuli.
    Grabenhorst F; Rolls ET
    Eur J Neurosci; 2008 Feb; 27(3):723-9. PubMed ID: 18279324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distributed processing of pain and vibration by the human brain.
    Coghill RC; Talbot JD; Evans AC; Meyer E; Gjedde A; Bushnell MC; Duncan GH
    J Neurosci; 1994 Jul; 14(7):4095-108. PubMed ID: 8027764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nociceptive response to innocuous mechanical stimulation is mediated via myelinated afferents and NK-1 receptor activation in a rat model of neuropathic pain.
    Pitcher GM; Henry JL
    Exp Neurol; 2004 Apr; 186(2):173-97. PubMed ID: 15026255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localization of pain-related brain activation: a meta-analysis of neuroimaging data.
    Duerden EG; Albanese MC
    Hum Brain Mapp; 2013 Jan; 34(1):109-49. PubMed ID: 22131304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Representation of cold allodynia in the human brain--a functional MRI study.
    Seifert F; Maihöfner C
    Neuroimage; 2007 Apr; 35(3):1168-80. PubMed ID: 17360197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.