BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

665 related articles for article (PubMed ID: 15978288)

  • 1. Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils.
    Hu XY; Wen B; Zhang S; Shan XQ
    Ecotoxicol Environ Saf; 2005 Sep; 62(1):26-34. PubMed ID: 15978288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioavailability of pentachlorophenol to earthworms (Eisenia fetida) in artificially contaminated soils.
    Hu XY; Wen B; Shan XQ; Zhang SZ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(10):1905-16. PubMed ID: 16194911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation and determination of phthalates by micellar electrokinetic chromatography.
    Guo BY; Wen B; Shan XQ; Zhang SZ; Lin JM
    J Chromatogr A; 2005 Nov; 1095(1-2):189-92. PubMed ID: 16225882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in accumulation, transport, and distribution of phthalic acid esters (PAEs) in soil columns grown with low- and high-PAE accumulating rice cultivars.
    Wu Y; Chen XX; Zhu TK; Li X; Chen XH; Mo CH; Li YW; Cai QY; Wong MH
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17768-17780. PubMed ID: 29675815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China.
    Xu G; Li F; Wang Q
    Sci Total Environ; 2008 Apr; 393(2-3):333-40. PubMed ID: 18258283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm.
    Chao WL; Cheng CY
    Chemosphere; 2007 Mar; 67(3):482-8. PubMed ID: 17092544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of phthalate esters in soil of e-waste recycling sites from Taizhou city in China.
    Liu WL; Shen CF; Zhang Z; Zhang CB
    Bull Environ Contam Toxicol; 2009 Jun; 82(6):665-7. PubMed ID: 19290451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor.
    Huang PC; Tien CJ; Sun YM; Hsieh CY; Lee CC
    Chemosphere; 2008 Sep; 73(4):539-44. PubMed ID: 18687453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of phthalates and adipate in bottled water by headspace solid-phase microextraction and gas chromatography/mass spectrometry.
    Cao XL
    J Chromatogr A; 2008 Jan; 1178(1-2):231-8. PubMed ID: 18082753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of pyrene bioavailability in soil by mild hydroxypropyl-β-cyclodextrin extraction.
    Khan MI; Cheema SA; Shen C; Zhang C; Tang X; Malik Z; Chen X; Chen Y
    Arch Environ Contam Toxicol; 2011 Jan; 60(1):107-15. PubMed ID: 20437042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a personal dual-phase air sampling method for phthalate diesters.
    Hines CJ; Yau AY; Zuniga MM; Wells JR; Nilsen Hopf NB; Camann DE
    J Environ Monit; 2010 Feb; 12(2):491-9. PubMed ID: 20145892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcritical water extraction for the remediation of phthalate ester-contaminated soil.
    Chang MS; Shen JY; Yang SH; Wu GJ
    J Hazard Mater; 2011 Sep; 192(3):1203-9. PubMed ID: 21733623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of clay content on bioavailability of copper in the earthworm Eisenia fetida.
    Owojori OJ; Reinecke AJ; Rozanov AB
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):407-14. PubMed ID: 19962760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils.
    Ownby DR; Galvan KA; Lydy MJ
    Environ Pollut; 2005 Jul; 136(2):315-21. PubMed ID: 15840539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of earthworms on copper fractionation of freshly and long-term polluted soils.
    Fujii Y; Kaneko N
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1754-9. PubMed ID: 19477521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils.
    Nahmani J; Hodson ME; Devin S; Vijver MG
    Environ Pollut; 2009 Oct; 157(10):2622-8. PubMed ID: 19482399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of studies performed to assess metal uptake by earthworms.
    Nahmani J; Hodson ME; Black S
    Environ Pollut; 2007 Jan; 145(2):402-24. PubMed ID: 16815606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of heavy metal-contaminated soils using phosphorus: evaluation of bioavailability using an earthworm bioassay.
    Maenpaa KA; Kukkonen JV; Lydy MJ
    Arch Environ Contam Toxicol; 2002 Nov; 43(4):389-98. PubMed ID: 12399909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of earthworms (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils.
    Wen B; Liu Y; Hu XY; Shan XQ
    Chemosphere; 2006 May; 63(7):1179-86. PubMed ID: 16289225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation of perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs) by earthworms (Eisenia fetida) in soil.
    Zhao S; Zhu L; Liu L; Liu Z; Zhang Y
    Environ Pollut; 2013 Aug; 179():45-52. PubMed ID: 23644275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.