These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 15978540)
1. Kinetics properties of Cu,Zn-superoxide dismutase as a function of metal content. Michel E; Nauser T; Sutter B; Bounds PL; Koppenol WH Arch Biochem Biophys; 2005 Jul; 439(2):234-40. PubMed ID: 15978540 [TBL] [Abstract][Full Text] [Related]
2. Kinetic properties of Cu,Zn-superoxide dismutase as a function of metal content--order restored. Goldstein S; Fridovich I; Czapski G Free Radic Biol Med; 2006 Sep; 41(6):937-41. PubMed ID: 16934676 [TBL] [Abstract][Full Text] [Related]
3. Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme. Stroppolo ME; Sette M; O'Neill P; Polizio F; Cambria MT; Desideri A Biochemistry; 1998 Sep; 37(35):12287-92. PubMed ID: 9724543 [TBL] [Abstract][Full Text] [Related]
4. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588 [TBL] [Abstract][Full Text] [Related]
5. Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase. Stroppolo ME; Pesce A; D'Orazio M; O'Neill P; Bordo D; Rosano C; Milani M; Battistoni A; Bolognesi M; Desideri A J Mol Biol; 2001 May; 308(3):555-63. PubMed ID: 11327787 [TBL] [Abstract][Full Text] [Related]
6. Transfer of copper and zinc from ionic and metallothionein-bound forms to Cu, Zn--superoxide dismutase. Suzuki KT; Kuroda T Res Commun Mol Pathol Pharmacol; 1995 Mar; 87(3):287-96. PubMed ID: 7620821 [TBL] [Abstract][Full Text] [Related]
7. Catalytic and structural role of a metal-free histidine residue in bovine Cu-Zn superoxide dismutase. Toyama A; Takahashi Y; Takeuchi H Biochemistry; 2004 Apr; 43(16):4670-9. PubMed ID: 15096035 [TBL] [Abstract][Full Text] [Related]
8. Toward the engineering of a super efficient enzyme. Folcarelli S; Venerini F; Battistoni A; O'neill P; Rotilio G; Desideri A Biochem Biophys Res Commun; 1999 Mar; 256(2):425-8. PubMed ID: 10079201 [TBL] [Abstract][Full Text] [Related]
9. Selective binding behavior of zinc(II) and copper(II) ions to their native sites of apo-bovine superoxide dismutase. Hirose J; Yamada M; Hayakawa C; Nagao H; Noji M; Kidani Y Biochem Int; 1984 Mar; 8(3):401-8. PubMed ID: 6477612 [TBL] [Abstract][Full Text] [Related]
10. Crystallographic structures of bovine copper-zinc superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper sites captured in the same crystal. Hough MA; Hasnain SS J Mol Biol; 1999 Apr; 287(3):579-92. PubMed ID: 10092461 [TBL] [Abstract][Full Text] [Related]
11. Thermal stability and redox properties of M. tuberculosis CuSOD. D'Orazio M; Cervoni L; Giartosio A; Rotilio G; Battistoni A Arch Biochem Biophys; 2009 Jun; 486(2):119-24. PubMed ID: 19383490 [TBL] [Abstract][Full Text] [Related]
12. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase. Ye M; English AM Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic characterization of recombinant Cu,Zn superoxide dismutase from Photobacterium leiognathi expressed in Escherichia coli: evidence for a novel catalytic copper binding site. Foti D; Lo Curto B; Cuzzocrea G; Stroppolo ME; Polizio F; Venanzi M; Desideri A Biochemistry; 1997 Jun; 36(23):7109-13. PubMed ID: 9188710 [TBL] [Abstract][Full Text] [Related]
14. Copper-zinc superoxide dismutase: theoretical insights into the catalytic mechanism. Pelmenschikov V; Siegbahn PE Inorg Chem; 2005 May; 44(9):3311-20. PubMed ID: 15847441 [TBL] [Abstract][Full Text] [Related]
15. X-ray absorption investigation of a unique protein domain able to bind both copper(I) and copper(II) at adjacent sites of the N-terminus of Haemophilus ducreyi Cu,Zn superoxide dismutase. D'Angelo P; Pacello F; Mancini G; Proux O; Hazemann JL; Desideri A; Battistoni A Biochemistry; 2005 Oct; 44(39):13144-50. PubMed ID: 16185082 [TBL] [Abstract][Full Text] [Related]
16. Change of zinc, copper, and metallothionein concentrations and the copper-zinc superoxide dismutase activity in patients with pancreatitis. Milnerowicz H; Jabłonowska M; Bizoń A Pancreas; 2009 Aug; 38(6):681-8. PubMed ID: 19629005 [TBL] [Abstract][Full Text] [Related]
17. Evidence of his61 imidazolate bridge rupture in reduced crystalline Cu,Zn superoxide dismutase. Ascone I; Castañer R; Tarricone C; Bolognesi M; Stroppolo ME; Desideri A Biochem Biophys Res Commun; 1997 Dec; 241(1):119-21. PubMed ID: 9405243 [TBL] [Abstract][Full Text] [Related]
18. Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase. Lynch SM; Colón W Biochem Biophys Res Commun; 2006 Feb; 340(2):457-61. PubMed ID: 16375856 [TBL] [Abstract][Full Text] [Related]
19. Electrostatic recognition in redox copper proteins: a 1H NMR study of the protonation behavior of His 19 in oxidized and reduced Cu,Zn superoxide dismutase. Desideri A; Polticelli F; Falconi M; Sette M; Ciriolo MR; Paci M; Rotilio G Arch Biochem Biophys; 1993 Mar; 301(2):244-50. PubMed ID: 8384828 [TBL] [Abstract][Full Text] [Related]
20. Kinetic stability of Cu/Zn superoxide dismutase is dependent on its metal ligands: implications for ALS. Lynch SM; Boswell SA; Colón W Biochemistry; 2004 Dec; 43(51):16525-31. PubMed ID: 15610047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]