These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 15978620)
21. Trapping of Vibrio cholerae cytolysin in the membrane-bound monomeric state blocks membrane insertion and functional pore formation by the toxin. Rai AK; Chattopadhyay K J Biol Chem; 2014 Jun; 289(24):16978-87. PubMed ID: 24794872 [TBL] [Abstract][Full Text] [Related]
22. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. Korotkov KV; Krumm B; Bagdasarian M; Hol WG J Mol Biol; 2006 Oct; 363(2):311-21. PubMed ID: 16978643 [TBL] [Abstract][Full Text] [Related]
23. Structural basis of mammalian glycan targeting by Vibrio cholerae cytolysin and biofilm proteins. De S; Kaus K; Sinclair S; Case BC; Olson R PLoS Pathog; 2018 Feb; 14(2):e1006841. PubMed ID: 29432487 [TBL] [Abstract][Full Text] [Related]
24. Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation and small-angle neutron scattering. Gilbert RJ; Heenan RK; Timmins PA; Gingles NA; Mitchell TJ; Rowe AJ; Rossjohn J; Parker MW; Andrew PW; Byron O J Mol Biol; 1999 Nov; 293(5):1145-60. PubMed ID: 10547292 [TBL] [Abstract][Full Text] [Related]
25. A molecular model of the Vibrio cholerae cytolysin transmembrane pore. Pantano S; Montecucco C Toxicon; 2006 Jan; 47(1):35-40. PubMed ID: 16330061 [TBL] [Abstract][Full Text] [Related]
26. Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain. Saka HA; Bidinost C; Sola C; Carranza P; Collino C; Ortiz S; Echenique JR; Bocco JL Microb Pathog; 2008 Feb; 44(2):118-28. PubMed ID: 17919878 [TBL] [Abstract][Full Text] [Related]
27. Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins. De S; Olson R Proc Natl Acad Sci U S A; 2011 May; 108(18):7385-90. PubMed ID: 21502531 [TBL] [Abstract][Full Text] [Related]
28. Glu289 residue in the pore-forming motif of Vibrio cholerae cytolysin is important for efficient β-barrel pore formation. Mondal AK; Sengupta N; Singh M; Biswas R; Lata K; Lahiri I; Dutta S; Chattopadhyay K J Biol Chem; 2022 Oct; 298(10):102441. PubMed ID: 36055404 [TBL] [Abstract][Full Text] [Related]
29. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. Abendroth J; Murphy P; Sandkvist M; Bagdasarian M; Hol WG J Mol Biol; 2005 May; 348(4):845-55. PubMed ID: 15843017 [TBL] [Abstract][Full Text] [Related]
30. Outer membrane vesicles mediate transport of biologically active Vibrio cholerae cytolysin (VCC) from V. cholerae strains. Elluri S; Enow C; Vdovikova S; Rompikuntal PK; Dongre M; Carlsson S; Pal A; Uhlin BE; Wai SN PLoS One; 2014; 9(9):e106731. PubMed ID: 25187967 [TBL] [Abstract][Full Text] [Related]
31. Transmembrane oligomeric form of Vibrio cholerae cytolysin triggers TLR2/TLR6-dependent proinflammatory responses in monocytes and macrophages. Khilwani B; Mukhopadhaya A; Chattopadhyay K Biochem J; 2015 Feb; 466(1):147-61. PubMed ID: 25431887 [TBL] [Abstract][Full Text] [Related]
32. Structure of the cytoplasmic domain of TcpE, the inner membrane core protein required for assembly of the Vibrio cholerae toxin-coregulated pilus. Kolappan S; Craig L Acta Crystallogr D Biol Crystallogr; 2013 Apr; 69(Pt 4):513-9. PubMed ID: 23519659 [TBL] [Abstract][Full Text] [Related]
33. The autophagic pathway: a cell survival strategy against the bacterial pore-forming toxin Vibrio cholerae cytolysin. Saka HA; Gutiérrez MG; Bocco JL; Colombo MI Autophagy; 2007; 3(4):363-5. PubMed ID: 17404497 [TBL] [Abstract][Full Text] [Related]
34. Single-particle cryo-EM reveals conformational variability of the oligomeric VCC β-barrel pore in a lipid bilayer. Sengupta N; Mondal AK; Mishra S; Chattopadhyay K; Dutta S J Cell Biol; 2021 Dec; 220(12):. PubMed ID: 34617964 [TBL] [Abstract][Full Text] [Related]
35. Mode of primary binding to target membranes and pore formation induced by Vibrio cholerae cytolysin (hemolysin). Zitzer A; Palmer M; Weller U; Wassenaar T; Biermann C; Tranum-Jensen J; Bhakdi S Eur J Biochem; 1997 Jul; 247(1):209-16. PubMed ID: 9249028 [TBL] [Abstract][Full Text] [Related]
36. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. Valeva A; Weisser A; Walker B; Kehoe M; Bayley H; Bhakdi S; Palmer M EMBO J; 1996 Apr; 15(8):1857-64. PubMed ID: 8617232 [TBL] [Abstract][Full Text] [Related]
37. Signaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin. Khilwani B; Chattopadhyay K Toxins (Basel); 2015 Aug; 7(8):3344-58. PubMed ID: 26308054 [TBL] [Abstract][Full Text] [Related]
38. Pro-inflammatory feedback activation cycle evoked by attack of Vibrio cholerae cytolysin on human neutrophil granulocytes. Valeva A; Walev I; Weis S; Boukhallouk F; Wassenaar TM; Bhakdi S Med Microbiol Immunol; 2008 Sep; 197(3):285-93. PubMed ID: 17882454 [TBL] [Abstract][Full Text] [Related]
39. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. Abendroth J; Rice AE; McLuskey K; Bagdasarian M; Hol WG J Mol Biol; 2004 Apr; 338(3):585-96. PubMed ID: 15081815 [TBL] [Abstract][Full Text] [Related]
40. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]