These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15978644)

  • 101. Localization of notches with Lamb waves.
    Benz R; Niethammer M; Hurlebaus S; Jacobs LJ
    J Acoust Soc Am; 2003 Aug; 114(2):677-85. PubMed ID: 12942951
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Spatial response of arbitrarily electroded piezoelectric plates by plane-wave decomposition.
    Noorbehesht B; Flesher G; Wade G
    Ultrason Imaging; 1980 Apr; 2(2):102-21. PubMed ID: 7189915
    [No Abstract]   [Full Text] [Related]  

  • 103. Ultrasonic wave-based structural health monitoring embedded instrument.
    Aranguren G; Monje PM; Cokonaj V; Barrera E; Ruiz M
    Rev Sci Instrum; 2013 Dec; 84(12):125106. PubMed ID: 24387467
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Fan beam and double crosshole Lamb wave tomography for mapping flaws in aging aircraft structures.
    Malyarenko EV; Hinders MK
    J Acoust Soc Am; 2000 Oct; 108(4):1631-9. PubMed ID: 11051491
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Wave propagation of functionally graded material plates in thermal environments.
    Sun D; Luo SN
    Ultrasonics; 2011 Dec; 51(8):940-52. PubMed ID: 21663930
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Experimental and numerical investigations of mechanical displacements in surface acoustic wave bounded beams.
    Weser R; Darinskii AN; Weihnacht M; Schmidt H
    Ultrasonics; 2020 Aug; 106():106077. PubMed ID: 32305680
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Lamb-Wave-Based Multistage Damage Detection Method Using an Active PZT Sensor Network for Large Structures.
    Hameed MS; Li Z; Chen J; Qi J
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035679
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Electro-elastic characteristics of asymmetric rectangular piezoelectric laminae.
    Chang SH; Tung YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):950-60. PubMed ID: 18238500
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Modeling of integrated Lamb waves generation systems using a coupled finite element-normal modes expansion method.
    Moulin E; Assaad J; Delebarre C; Grondel S; Balageas D
    Ultrasonics; 2000 Mar; 38(1-8):522-6. PubMed ID: 10829718
    [TBL] [Abstract][Full Text] [Related]  

  • 110. A coupled-mode theory for periodic piezoelectric composites.
    Craciun F; Sorba L; Molinari E; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(1):50-6. PubMed ID: 18284949
    [TBL] [Abstract][Full Text] [Related]  

  • 111. A circuit simulation compatible surface acoustic wave interdigital transducer macro-model.
    Munshi J; Tuli S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):783-5. PubMed ID: 15300996
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites.
    Meyers FN; Loh KJ; Dodds JS; Baltazar A
    Nanotechnology; 2013 May; 24(18):185501. PubMed ID: 23579369
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Experimental identification of high order Lamb waves and estimation of the mechanical properties of a dry human skull.
    Mazzotti M; Sugino C; Kohtanen E; Erturk A; Ruzzene M
    Ultrasonics; 2021 May; 113():106343. PubMed ID: 33540235
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Wave Electromechanical Coupling Factor for the Guided Waves in Piezoelectric Composites.
    Fan Y; Collet M; Ichchou M; Bareille O; Li L
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30103478
    [TBL] [Abstract][Full Text] [Related]  

  • 115. AlN/ZnO/diamond waveguiding layer acoustic wave structure: theoretical and experimental results.
    Le Brizoual L; Elmazria O; Zhgoon S; Soussou A; Sarry F; Djouadi MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1818-24. PubMed ID: 20679010
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Optimization design of a Lamb wave device for density sensing of nonviscous liquid.
    Chen Z; Li L; Shi W; Guo H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):1949-59. PubMed ID: 18019231
    [TBL] [Abstract][Full Text] [Related]  

  • 117. A practical omni-directional SH wave transducer for structural health monitoring based on two thickness-poled piezoelectric half-rings.
    Huan Q; Chen M; Li F
    Ultrasonics; 2019 Apr; 94():342-349. PubMed ID: 30077347
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Optimization of PZT ceramic IDT sensors for health monitoring of structures.
    Takpara R; Duquennoy M; Ouaftouh M; Courtois C; Jenot F; Rguiti M
    Ultrasonics; 2017 Aug; 79():96-104. PubMed ID: 28458063
    [TBL] [Abstract][Full Text] [Related]  

  • 119. On the optimization of the effective electromechanical coupling coefficients of a piezoelectric body.
    Aronov B
    J Acoust Soc Am; 2003 Aug; 114(2):792-800. PubMed ID: 12942962
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Comparison of the frequency and physical nature of the lowest order parasitic mode in single crystal and ceramic 2-2 and 1-3 piezoelectric composite transducers.
    Robertson D; Hayward G; Gachagan A; Murray V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1503-12. PubMed ID: 16921903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.