BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 15978991)

  • 1. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity.
    Goyal S; Dhull SK; Kapoor KK
    Bioresour Technol; 2005 Sep; 96(14):1584-91. PubMed ID: 15978991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability.
    Bustamante MA; Paredes C; Marhuenda-Egea FC; Pérez-Espinosa A; Bernal MP; Moral R
    Chemosphere; 2008 Jun; 72(4):551-7. PubMed ID: 18466954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiological parameters as indicators of compost maturity.
    Tiquia SM
    J Appl Microbiol; 2005; 99(4):816-28. PubMed ID: 16162232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw.
    Pandey AK; Gaind S; Ali A; Nain L
    Biodegradation; 2009 Jun; 20(3):293-306. PubMed ID: 18839317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of amendments on windrow composting of sugar industry pressmud.
    Satisha GC; Devarajan L
    Waste Manag; 2007; 27(9):1083-91. PubMed ID: 16876397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter.
    Hachicha S; Sellami F; Cegarra J; Hachicha R; Drira N; Medhioub K; Ammar E
    J Hazard Mater; 2009 Feb; 162(1):402-9. PubMed ID: 18597932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of four low-technology composting methods for market crop wastes.
    Tumuhairwe JB; Tenywa JS; Otabbong E; Ledin S
    Waste Manag; 2009 Aug; 29(8):2274-81. PubMed ID: 19364641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of organic matter during co-composting of pig manure with sawdust.
    Huang GF; Wu QT; Wong JW; Nagar BB
    Bioresour Technol; 2006 Oct; 97(15):1834-42. PubMed ID: 16289790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants.
    Gaind S; Pandey AK; Lata
    J Basic Microbiol; 2005; 45(4):301-11. PubMed ID: 16028202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of the evolution of an industrial compost and prediction of some compost properties by NIR spectroscopy.
    Vergnoux A; Guiliano M; Le Dréau Y; Kister J; Dupuy N; Doumenq P
    Sci Total Environ; 2009 Mar; 407(7):2390-403. PubMed ID: 19167742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A full-scale study of treatment of pig slurry by composting: kinetic changes in chemical and microbial properties.
    Ros M; García C; Hernández T
    Waste Manag; 2006; 26(10):1108-18. PubMed ID: 16293406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment.
    Sellami F; Jarboui R; Hachicha S; Medhioub K; Ammar E
    Bioresour Technol; 2008 Mar; 99(5):1177-88. PubMed ID: 17433668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Techniques for the evaluation of maturity for composts of industrially contaminated lake sediments.
    Aparna C; Saritha P; Himabindu V; Anjaneyulu Y
    Waste Manag; 2008; 28(10):1773-84. PubMed ID: 17905577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in enzymatic activities and microbial properties in vermicompost of water hyacinth as affected by pre-composting and fungal inoculation: a comparative study of ergosterol and chitin for estimating fungal biomass.
    Pramanik P
    Waste Manag; 2010; 30(8-9):1472-6. PubMed ID: 20303251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes.
    Zhang F; Gu W; Xu P; Tang S; Xie K; Huang X; Huang Q
    Waste Manag; 2011 Jun; 31(6):1333-8. PubMed ID: 21376559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of extracted organic carbon and microbial biomass as stability parameters in ligno-cellulosic waste composts.
    Mondini C; Sánchez-Monedero MA; Sinicco T; Leita L
    J Environ Qual; 2006; 35(6):2313-20. PubMed ID: 17071902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification.
    Dias BO; Silva CA; Higashikawa FS; Roig A; Sánchez-Monedero MA
    Bioresour Technol; 2010 Feb; 101(4):1239-46. PubMed ID: 19796932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions.
    Castaldi P; Garau G; Melis P
    Waste Manag; 2008; 28(3):534-40. PubMed ID: 17382530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the fatty fraction during co-composting of olive oil industry wastes with animal manure: maturity assessment of the end product.
    Hachicha R; Hachicha S; Trabelsi I; Woodward S; Mechichi T
    Chemosphere; 2009 Jun; 75(10):1382-6. PubMed ID: 19332349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency.
    Ogunwande GA; Osunade JA; Adekalu KO; Ogunjimi LA
    Bioresour Technol; 2008 Nov; 99(16):7495-503. PubMed ID: 18367393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.