BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

542 related articles for article (PubMed ID: 15979033)

  • 1. A G-to-A transition at the fifth position of intron-32 of the dystrophin gene inactivates a splice-donor site both in vivo and in vitro.
    Thi Tran HT; Takeshima Y; Surono A; Yagi M; Wada H; Matsuo M
    Mol Genet Metab; 2005 Jul; 85(3):213-9. PubMed ID: 15979033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene.
    Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M
    J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two alternative exons can result from activation of the cryptic splice acceptor site deep within intron 2 of the dystrophin gene in a patient with as yet asymptomatic dystrophinopathy.
    Yagi M; Takeshima Y; Wada H; Nakamura H; Matsuo M
    Hum Genet; 2003 Feb; 112(2):164-70. PubMed ID: 12522557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point mutations in the dystrophin gene: evidence for frequent use of cryptic splice sites as a result of splicing defects.
    Tuffery-Giraud S; Chambert S; Demaille J; Claustres M
    Hum Mutat; 1999; 14(5):359-68. PubMed ID: 10533061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel cryptic exon in intron 3 of the dystrophin gene was incorporated into dystrophin mRNA with a single nucleotide deletion in exon 5.
    Suminaga R; Takeshima Y; Adachi K; Yagi M; Nakamura H; Matsuo M
    J Hum Genet; 2002; 47(4):196-201. PubMed ID: 12166656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Becker muscular dystrophy caused by an intronic mutation reducing the efficiency of the splice donor site of intron 26 of the dystrophin gene.
    Baskin B; Banwell B; Khater RA; Hawkins C; Ray PN
    Neuromuscul Disord; 2009 Mar; 19(3):189-92. PubMed ID: 19230662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe.
    Takeshima Y; Nishio H; Sakamoto H; Nakamura H; Matsuo M
    J Clin Invest; 1995 Feb; 95(2):515-20. PubMed ID: 7860733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel cryptic exon in intron 2 of the human dystrophin gene evolved from an intron by acquiring consensus sequences for splicing at different stages of anthropoid evolution.
    Dwi Pramono ZA; Takeshima Y; Surono A; Ishida T; Matsuo M
    Biochem Biophys Res Commun; 2000 Jan; 267(1):321-8. PubMed ID: 10623618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct mutations in a single dystrophin gene: identification of an altered splice-site as the primary Becker muscular dystrophy mutation.
    Wilton SD; Johnsen RD; Pedretti JR; Laing NG
    Am J Med Genet; 1993 Jun; 46(5):563-9. PubMed ID: 8322822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel cryptic exons identified in introns 2 and 3 of the human dystrophin gene with duplication of exons 8-11.
    Ishibashi K; Takeshima Y; Yagi M; Nishiyama A; Matsuo M
    Kobe J Med Sci; 2006; 52(3-4):61-75. PubMed ID: 16849873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy.
    Narita N; Nishio H; Kitoh Y; Ishikawa Y; Ishikawa Y; Minami R; Nakamura H; Matsuo M
    J Clin Invest; 1993 May; 91(5):1862-7. PubMed ID: 8387534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudoexon activation in the DMD gene as a novel mechanism for Becker muscular dystrophy.
    Tuffery-Giraud S; Saquet C; Chambert S; Claustres M
    Hum Mutat; 2003 Jun; 21(6):608-14. PubMed ID: 12754707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing analysis disclosed a determinant single nucleotide for exon skipping caused by a novel intraexonic four-nucleotide deletion in the dystrophin gene.
    Tran VK; Takeshima Y; Zhang Z; Yagi M; Nishiyama A; Habara Y; Matsuo M
    J Med Genet; 2006 Dec; 43(12):924-30. PubMed ID: 16738009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays.
    Graham IR; Hill VJ; Manoharan M; Inamati GB; Dickson G
    J Gene Med; 2004 Oct; 6(10):1149-58. PubMed ID: 15386737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide.
    Bartlett RJ; Stockinger S; Denis MM; Bartlett WT; Inverardi L; Le TT; thi Man N; Morris GE; Bogan DJ; Metcalf-Bogan J; Kornegay JN
    Nat Biotechnol; 2000 Jun; 18(6):615-22. PubMed ID: 10835598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Newly recognized exons induced by a splicing abnormality from an intronic mutation of the dystrophin gene resulting in Duchenne muscular dystrophy. Mutations in brief no. 213. Online.
    Ikezawa M; Nishino I; Goto Y; Miike T; Nonaka I
    Hum Mutat; 1999; 13(2):170. PubMed ID: 10094556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a point mutation and germinal mosaicism in a Duchenne muscular dystrophy family.
    Wilton SD; Chandler DC; Kakulas BA; Laing NG
    Hum Mutat; 1994; 3(2):133-40. PubMed ID: 8199594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel splice site mutation (3157+1G>T) in the dystrophin gene causing total exon skipping and DMD phenotype.
    Sironi M; Corti S; Locatelli F; Cagliani R; Comi GP
    Hum Mutat; 2001 Mar; 17(3):239. PubMed ID: 11241855
    [No Abstract]   [Full Text] [Related]  

  • 19. Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy kobe.
    Matsuo M; Masumura T; Nishio H; Nakajima T; Kitoh Y; Takumi T; Koga J; Nakamura H
    J Clin Invest; 1991 Jun; 87(6):2127-31. PubMed ID: 2040695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.
    Shiga N; Takeshima Y; Sakamoto H; Inoue K; Yokota Y; Yokoyama M; Matsuo M
    J Clin Invest; 1997 Nov; 100(9):2204-10. PubMed ID: 9410897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.