These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15979688)

  • 61. Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite.
    Wang S; Hu J; Li J; Dong Y
    J Hazard Mater; 2009 Aug; 167(1-3):44-51. PubMed ID: 19185421
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Am-241 remobilization in a calcareous soil under simplified rhizospheric conditions studied by column experiments.
    Perrier T; Martin-Garin A; Morello M
    J Environ Radioact; 2005; 79(2):205-21. PubMed ID: 15603908
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain.
    Shaoping H; Xincai C; Jiyan S; Yingxu C; Qi L
    Chemosphere; 2008 May; 71(11):2091-7. PubMed ID: 18329689
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A study of the elemental leachability and retention capability of compost.
    Song QJ; Greenway GM
    J Environ Monit; 2004 Jan; 6(1):31-7. PubMed ID: 14737468
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing.
    Zhang W; Tsang DC; Lo IM
    Chemosphere; 2007 Feb; 66(11):2025-34. PubMed ID: 17123574
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil.
    Ash C; Tejnecký V; Borůvka L; Drábek O
    J Contam Hydrol; 2016 Apr; 187():18-30. PubMed ID: 26849837
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter.
    López ML; Peralta-Videa JR; Benitez T; Gardea-Torresdey JL
    Chemosphere; 2005 Oct; 61(4):595-8. PubMed ID: 16202815
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study.
    Deiss J; Byers C; Clover D; D'Amore D; Love A; Menzies MA; Powell J; Walter MT
    J Contam Hydrol; 2004 Oct; 74(1-4):1-18. PubMed ID: 15358484
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of bone char application on Pb bioavailability in a Pb-contaminated soil.
    Chen SB; Zhu YG; Ma YB; McKay G
    Environ Pollut; 2006 Feb; 139(3):433-9. PubMed ID: 16095783
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite).
    Chaturvedi PK; Seth CS; Misra V
    Chemosphere; 2006 Aug; 64(7):1109-14. PubMed ID: 16423377
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Leaching and reduction of chromium in soil as affected by soil organic content and plants.
    Banks MK; Schwab AP; Henderson C
    Chemosphere; 2006 Jan; 62(2):255-64. PubMed ID: 16000212
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modeling the kinetics of Fe(II) oxidation in the presence of citrate and salicylate in aqueous solutions at pH 6.0-8.0 and 25 degrees C.
    Pham AN; Waite TD
    J Phys Chem A; 2008 Jun; 112(24):5395-405. PubMed ID: 18507361
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Extractability and leachability of Pb in a shooting range soil amended with poultry litter ash: investigations for immobilization potentials.
    Hashimoto Y; Taki T; Sato T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):583-90. PubMed ID: 19337921
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil.
    Sheng XF; Jiang CY; He LY
    Can J Microbiol; 2008 May; 54(5):417-22. PubMed ID: 18449227
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments--a review.
    Kumpiene J; Lagerkvist A; Maurice C
    Waste Manag; 2008; 28(1):215-25. PubMed ID: 17320367
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater.
    Kent DB; Davis JA; Joye JL; Curtis GP
    Environ Pollut; 2008 May; 153(1):44-52. PubMed ID: 18178297
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system.
    Liu D; Islam E; Ma J; Wang X; Mahmood Q; Jin X; Li T; Yang X; Gupta D
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):30-5. PubMed ID: 18484226
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effect of EDDS and citrate on the uptake of lead in hydroponically grown Matthiola flavida.
    Mohtadi A; Ghaderian SM; Schat H
    Chemosphere; 2013 Oct; 93(6):986-9. PubMed ID: 23806486
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Subsurface transport of Cd, Cr, and Mo mediated by biosolid colloids.
    Karathanasis AD; Johnson DM
    Sci Total Environ; 2006 Feb; 354(2-3):157-69. PubMed ID: 16398992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.