These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1219 related articles for article (PubMed ID: 15979817)
1. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Ashamalla H; Rafla S; Parikh K; Mokhtar B; Goswami G; Kambam S; Abdel-Dayem H; Guirguis A; Ross P; Evola A Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1016-23. PubMed ID: 15979817 [TBL] [Abstract][Full Text] [Related]
2. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Bradley J; Thorstad WL; Mutic S; Miller TR; Dehdashti F; Siegel BA; Bosch W; Bertrand RJ Int J Radiat Oncol Biol Phys; 2004 May; 59(1):78-86. PubMed ID: 15093902 [TBL] [Abstract][Full Text] [Related]
3. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Hong R; Halama J; Bova D; Sethi A; Emami B Int J Radiat Oncol Biol Phys; 2007 Mar; 67(3):720-6. PubMed ID: 17293230 [TBL] [Abstract][Full Text] [Related]
4. The impact of positron emission tomography/computed tomography in edge delineation of gross tumor volume for head and neck cancers. Ashamalla H; Guirgius A; Bieniek E; Rafla S; Evola A; Goswami G; Oldroyd R; Mokhtar B; Parikh K Int J Radiat Oncol Biol Phys; 2007 Jun; 68(2):388-95. PubMed ID: 17324530 [TBL] [Abstract][Full Text] [Related]
5. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Deniaud-Alexandre E; Touboul E; Lerouge D; Grahek D; Foulquier JN; Petegnief Y; Grès B; El Balaa H; Keraudy K; Kerrou K; Montravers F; Milleron B; Lebeau B; Talbot JN Int J Radiat Oncol Biol Phys; 2005 Dec; 63(5):1432-41. PubMed ID: 16125870 [TBL] [Abstract][Full Text] [Related]
6. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. Nestle U; Kremp S; Schaefer-Schuler A; Sebastian-Welsch C; Hellwig D; Rübe C; Kirsch CM J Nucl Med; 2005 Aug; 46(8):1342-8. PubMed ID: 16085592 [TBL] [Abstract][Full Text] [Related]
7. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist? Hanna GG; Carson KJ; Lynch T; McAleese J; Cosgrove VP; Eakin RL; Stewart DP; Zatari A; O'Sullivan JM; Hounsell AR Int J Radiat Oncol Biol Phys; 2010 Nov; 78(4):1040-51. PubMed ID: 20350798 [TBL] [Abstract][Full Text] [Related]
8. Impact of FDG PET/CT on delineation of the gross tumor volume for radiation planning in non-small-cell lung cancer. Spratt DE; Diaz R; McElmurray J; Csiki I; Duggan D; Lu B; Delbeke D Clin Nucl Med; 2010 Apr; 35(4):237-43. PubMed ID: 20305410 [TBL] [Abstract][Full Text] [Related]
9. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? Biehl KJ; Kong FM; Dehdashti F; Jin JY; Mutic S; El Naqa I; Siegel BA; Bradley JD J Nucl Med; 2006 Nov; 47(11):1808-12. PubMed ID: 17079814 [TBL] [Abstract][Full Text] [Related]
10. Reproducibility of "intelligent" contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Bayne M; Hicks RJ; Everitt S; Fimmell N; Ball D; Reynolds J; Lau E; Pitman A; Ware R; MacManus M Int J Radiat Oncol Biol Phys; 2010 Jul; 77(4):1151-7. PubMed ID: 20610039 [TBL] [Abstract][Full Text] [Related]
11. The role of PET/CT in decreasing inter-observer variability in treatment planning and evaluation of response for cervical cancer. Tejwani A; Lavaf A; Parikh K; Mokhtar B; Swamy U; Emmolo J; Guirguis A; Ashamalla H Am J Nucl Med Mol Imaging; 2012; 2(3):307-13. PubMed ID: 23133818 [TBL] [Abstract][Full Text] [Related]
12. [Impact of computed tomography (CT) and 18F-deoxyglucose-coincidence detection emission tomography (FDG-CDET) image fusion for optimisation of conformal radiotherapy in non-small-cell lung cancers]. Deniaud-Alexandre E; Touboul E; Lerouge D; Grahek D; Foulquier JN; Petegnief Y; Grès B; El Balaa H; Keraudy K; Kerrou K; Montravers F; Milleron B; Lebeau B; Talbot JN Cancer Radiother; 2005 Sep; 9(5):304-15. PubMed ID: 16087377 [TBL] [Abstract][Full Text] [Related]
13. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Steenbakkers RJ; Duppen JC; Fitton I; Deurloo KE; Zijp LJ; Comans EF; Uitterhoeve AL; Rodrigus PT; Kramer GW; Bussink J; De Jaeger K; Belderbos JS; Nowak PJ; van Herk M; Rasch CR Int J Radiat Oncol Biol Phys; 2006 Feb; 64(2):435-48. PubMed ID: 16198064 [TBL] [Abstract][Full Text] [Related]
14. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT. Hanna GG; McAleese J; Carson KJ; Stewart DP; Cosgrove VP; Eakin RL; Zatari A; Lynch T; Jarritt PH; Young VA; O'Sullivan JM; Hounsell AR Int J Radiat Oncol Biol Phys; 2010 May; 77(1):24-30. PubMed ID: 19665324 [TBL] [Abstract][Full Text] [Related]
15. Automated functional image-guided radiation treatment planning for rectal cancer. Ciernik IF; Huser M; Burger C; Davis JB; Szekely G Int J Radiat Oncol Biol Phys; 2005 Jul; 62(3):893-900. PubMed ID: 15936575 [TBL] [Abstract][Full Text] [Related]
16. Defining a radiotherapy target with positron emission tomography. Black QC; Grills IS; Kestin LL; Wong CY; Wong JW; Martinez AA; Yan D Int J Radiat Oncol Biol Phys; 2004 Nov; 60(4):1272-82. PubMed ID: 15519800 [TBL] [Abstract][Full Text] [Related]
17. Influence of FDG-PET on computed tomography-based radiotherapy planning for locally recurrent nasopharyngeal carcinoma. Zheng XK; Chen LH; Wang QS; Wu HB; Wang HM; Chen YQ; Yan WP; Li QS; Xu YK Int J Radiat Oncol Biol Phys; 2007 Dec; 69(5):1381-8. PubMed ID: 17869450 [TBL] [Abstract][Full Text] [Related]
18. Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Grills IS; Yan D; Black QC; Wong CY; Martinez AA; Kestin LL Int J Radiat Oncol Biol Phys; 2007 Mar; 67(3):709-19. PubMed ID: 17197120 [TBL] [Abstract][Full Text] [Related]
19. 18F-FDG PET definition of gross tumor volume for radiotherapy of lung cancer: is the tumor uptake value-based approach appropriate for lymph node delineation? Rodríguez N; Sanz X; Trampal C; Foro P; Reig A; Lacruz M; Membrive I; Lozano J; Quera J; Algara M Int J Radiat Oncol Biol Phys; 2010 Nov; 78(3):659-66. PubMed ID: 20133071 [TBL] [Abstract][Full Text] [Related]
20. Variation in background intensity affects PET-based gross tumor volume delineation in non-small-cell lung cancer: the need for individualized information. Chen GH; Yao ZF; Fan XW; Zhang YJ; Gao HQ; Qian W; Wu KL; Jiang GL Radiother Oncol; 2013 Oct; 109(1):71-6. PubMed ID: 24060171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]